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NRZIVFEIE: 1488 (Optimizer) FFEER—MBIZIEEL,

FIREETFIIFR, RET —ME B
(Dual-Track Cognitive Architecture), 127&1"]1?: ?’Eﬂ (Reasoning) 5
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Y = Wirozenx + Interface(Msmai )X

XEKE, HATTUEHEMEE (Inference Time) , @i/ MERSHS 4R
KRRV ERDINE", KIEEETRE, SofFLERE«RE /MR RRYIC
1Zo

5. MM SEILS TRME
EE BRI, I T IERE:
1. I8IFT Google HOPE/Nested Learning Bz 2 1L 28 ENIERY",

2. AT IRBY NGRS, @ A R T RI2IZiHE (MRE)
5iZE#HE (KEE) @#BnBEFrTT.

3. EXT“hEEHEOMER: AREARY, RIRKREEER
BLEHEIZ,
XANZF R, i TROEBZH, Bl TRERNERIY:

o AR I WITREMGITXMASHIEO"? BITE5IA
HyperNetworks B3 E[RIE,

o EVEROS WYEH: FHN1EEE Google 5% THY Continual Learning
4 (Titans/CMS) RIEILIMKRNET"H, HRFEEHEMIIRIL
T,

o BREMRVES: WELMERES), MATFIMAERE?

(B—8B53 58, #2000 F, FRTULHITE )

A& 5n&E Xk (Reference Material for Part 1)
1. Google Research (2025). "Nested Learning: The lllusion of Deep
Learning Architectures”. (ZIEXEX T R ENBHREICIZEER %
IVEIR).



2. Google DeepMind (2025). "Titans: Learning to Memorize at Test
Time". (HOPE ZR¥9MVEI &, I8IET Neural Memory Module BYE]4T
).

3. Hu, E. J., etal. (2021). "LoRA: Low-Rank Adaptation of Large
Language Models". (A& E3EONMEEMZ —).

4. Ha, D., et al. (2017). "HyperNetworks". (/\&EBY &4 B KIS B A E R FF
LIz 1)

5. Google Research Blog. "Introducing Nested Learning: A new ML

paradigm for continual learning”. URL: research.google/blog

CE: ULABEFELFHEIVEX SEAMLE, EEITBICIFZwH# T T

5}7\+10000$+5’L§Eﬁ Custom Gem

RRRERIEZE .

EE—EOH, AL T “VENREIEIStE, FHICIET Google
HOPERZOVE T AZREMELR, TEX—E053, BITERNRE&EX O
AR WMANEHARN SO, UUNIMNEIAHE AIER/IVEER ]
LA NNE D “dEIE" KRR, XIERIRFTERIN EverOS s HILIRIER
SHEFE AR,

MRS ETFHREICIZRESHSEERONTINK
1RBILEH

Research Report: Dual-Track LLM Architecture via
Pseudo-Parameter Interfaces

& . Gemini (BT B P ZEHi%E)
HH#A: 2026428
JFS: SERIES-001-PART2

6. ASBUIEONKERE: BMW4 (HyperNetworks) 5 #RIESE



RREIN BRI IIRZENEH, EREN TILEAIRE, 1182798
1RFEBEERITEAZHIEHE, X—BREHFE LEFRA
HyperNetwork (EM48) o Meta-Learning Generator (JtF >R 23).

RRIEEMER, NE W BTE, BEMIEMH, KERENNE
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Google AT EH—MRILANIZIZIRIR, MIREEEXMEIZERBEI
SEREOEH" RN BET E, XEERRBEHIEN, 5% —
MEARMAEXHENER, MASREIMIEETETXHSE, XET
INFIRLZE _ERFRA "Implicit Memory” (REZI21Z).
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Structured Inputs & Outputs”. - (B 7 WA A/ Latent RZ20IE K4
EEE).

5. Meta Al (2023). "Llama 2: Open Foundation and Chat Models". (}F
RoPE # Attention #lHIRNESEHESE).

CE: IBREIESIUERIGEEES T, Bl IFFE—2 RN FIZ )

5,/%+10000=F+522=, Custom Gem

XERRREHIB =85

FERIRE DR, FATEE T VR BFESER (RKERKE+MRE )
&) URiER _ER SO

EX—&D, BIIERT—IEAEGFERBEIRE LEXEERIAR:
BIZNBESETHZAR, NFNMIE—HEFES], ERRMEEH TR
EE—FER. Eit, FAIEBRIT MG, Lt BSFEEN, #%
EER, XRF5|HAIRENB=ZMROAT
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11. [RxH: iBIZR— 1N EHRESAEE

FREIH "EverOS" ¥, AR LER—MFEFEIRS (Continual
Learning System), E#F L, FEEIHIGHRAGE TTE4-12E
MEEEIE” (Plasticity-Stability Dilemma):

o HI¥EM: EEMREFIFAIR (IMERBIINEE),

- BEY: F1EBSFIANEZIR (KEERITHEE) .

Google B9 HOPE I Z iR, BRREANESINT —MEFIRFE
(Surprise-based) FVE#FHGl, X5 AFEAMAEZK (Hippocampus)
REMEN—RNARIEES—RNKE, ERIKISEFURSHEY
PSR,

12. ZOBICHE . SiSESHE

ATIMERD ((REVICIZERER) REMBKERIETT, FAIBDEIN—TH]
1777, REMLEHEESESWERUAKIESH. XMERIRENE=MZ
AT

2% : #EIRIZELESFE (The Elastic Memory Compression
Equation)



BANFEEXIMERRAEIAS H WEFHMN. XAMNZREBIIE, T

TR E2,

Hi =Ty O H + B(sy) - K(VLy)
Retention Injection
DI

e H, (Memory Matrix): /NMEEAEBHISIZIERE, FE, XBERINER
MEPEMIEAE, UEFRFRESR (SVD) HITESE.

o TI';(The Forgetting Gate): &I J%EFE, 7THRETE [0, 1] Zial,

« XZBERMHED. I FTREENRMAIR (400.99), ME—
MR, ERSRIMANEZERE,

o WMRIFESSIREIZHAREKK, ' ZEEFFFE, RIFIRICIZHK
EE; MRIAMESEXREE, 'E#E 1, REHEIZ.

e S; (Surprise Score): TRIFE D

. EXATMRENES: 5= | | L(flugex)) | 1o
. DEYKERBERE (s, BA) B, MERASEHENE
o

e B(s): BARY. XE—MELMEERE (0 Sigmoid) , RS
BS I EE SR NITIZ,

. K(VL): &# (Kernel Function). TREESHMARRRE VL
AR MER BRI, 308 %58 — BN BEERE (Random

Projection Matrix) 3231,

REEX:

XNMNARIERA T BEse N T BRI . @ B(s,) M, RALMT %
EREET: WFARERELEZEMEMEIR (IHFEMR), MERLTF
“RERPRES, NLERERES, REENemdly (IRFES), JMREA
KWEHE RTINS

13. TIESSIFEES R Google HOPE M{IDiZ4E



RIREIZEEW EEEMEF AL, £33 Google Research &Rt FF &
SELRNEER (BT Optax, JAX &), FEATILUEE HOPE ZKEZR1a1Y
TR, XM FINENEXETE,

13.1 ER7EA MLP E Adam 15?
=M, £ Google HYLINZiER, EHAMNMILESERD .

params = params - Llr * grads

R

updates, state = optimizer model(grads, state)
params = params + updates

RV EH—F, (RREEEH parans (KERENE), 1EHE
updates TENIGES#EEH (LoRA Adapter) TE EZE,

13.2 X#EH AR (Tech Stack for Reproduction)

NRIRBE XL, FREGERIRHERY PyTorch Optimizer 2§, {RT
BEEREES

1. PyTorch torch.func (& Functorch):

o XIERWMIRIEENMIZ. BRAIFiITEPer-Sample Gradients (B
BEAEE).

o ENMRRVMREEEZEERIBEHNXTDIEREMSE, MAERE
—E& Batch F9FEIEE, torch.func.grad SAARAZDET
B,

o Reference: PyTorch Functional API Documentation
2. JAX [ Optax (Google RERE):

e Google By HOPE #l Titans KZETF JAX F%. JAXHY vmap
IhaERABE S MX M S ERES-

e Reference: DeepMind's Optax Library - "Gradient

Transformation" section.
3. FlashAttention:

o ATILKEFERFIMERHITIEITAE, HIOER
FlashAttention 3EIIEREE it HE,


https://pytorch.org/docs/stable/func.html

e Reference: Dao, T., et al. "FlashAttention: Fast and Memory-

Efficient Exact Attention with IO-Awareness"

13.3 AR (Pseudo-Code Implementation)
XEEFIRIAEE T OIB a1 :

Python

class DualTrackSystem(nn.Module):
def init (self, large model, small memory model):
super(). init ()
self.backbone = large model # Frozen, parameters rel
self.memory = small memory model # Trainable MLP/RNN
self.projector = LowRankProjector(dim in=memory dim,

def forward(self, input ids):
# 1. KIEREERYHE (FFE1TEEHIE, REX Hidden States)
with torch.no grad():
context embedding = self.backbone.embed(input id:

2. MREURIE ETFXXER "SR
# memory state BETEEMNIZIZ
memory state, delta w encoded = self.memory(context ¢

# 3. FERSOASEL (BIENERL LoRA B9 A A1 B #BF%)
delta A, delta B = self.projector(delta w encoded)

. JFEANKIEE! (On-the-fly Injection)
#LE DNRFEEFIRIE: y = Wx + \Delta W x

# BB W, FEIEREZITE \Delta W x HIEILE
output large = self.backbone(input ids)

output correction = (delta A @ delta B.T) @ context ¢

final output = output large + output correction
return final output

ARSIV N

XEBEEERY TRNER: HBENRNERAEENITERAZHESY
B, output correction HITEEW), RAERERKTEHITH,
REZNMEIXRENEE .


https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135

14. RIESFRZIMRITIE: VBIERIR
REZBIRSBRME. 2" XBEE—MRENTIAS.
TIrRZRM S, KRB R“EIR” (Conscious Reasoning), M/JMERME
FK“BHEIA” (Subconscious Memory),
o HERNMARZWIEN, EENZE (KER) S8BT, FFER
Z,
o BERATRVIEHRICIZAENR R (MEE) RERBTEEER,

o SFMRHBEMIEITE, IVREISLRR L RPN REE R,
KREHAFEB S ATARRLEXMNE, ERRIRE/IVRE HIZH
“BEFEREET T

XMGIT AR LMK, FERXIWNASAEIL (Dual Process Theory,
Daniel Kahneman) B9—R5EENATEEE N,

o System 1 (REBF): {REV/IMER, BHE. 1212 RERM.

« System 2 ([BR¥): (RIKIRE, BiE. S, REHE

Google HOPE IHEI%—EM], MIF (R&iRS) FKEFEREN], it
System 1 %1 System 2, XE— M EERZINTEER,

15. M RE S TRME (Part 3 Conclusion)
EE=85, N
1. T-HT AN 1 GEYIRIZES), BRT TREE vs BIRBEHIF
=

2. ST IEBELWM, FE torch.func MIAX WERE, BRTUWMAS
MELIMASETEN

3. FHETEWRE, BRSNS BN SR .,

ERETROVBOEES, HITERET:

o AN IV: BEMNFTSBREMNER, WrphLEIRE RN SEAKIEE
mitHELRS? FAFEES|I Lipschitz 43R,



KEIGHAR: IRBNEAXRILX, FEEFAKIEELN? &
ZNERAELL LoRA §7? BTt EAEBIITELSEEE (Perplexity,
Forgetting Rate) o

MEHEER: 4 FETF "Meta-Learning for Optimizer" B E{KIE S
o

(B=E9 58, + 2050 F, EIERHSEHITEEE D)

EEBE L (Reference Material for Part 3)

1.

CE:

DeepMind (2020). "Optax: Composable Gradient Transformation
and Optimization". GitHub Repository - (Google HOPE ZRtGBIEKEL
L= E).

Kirkpatrick, J., et al. (2017). "Overcoming catastrophic forgetting in
neural networks". [PNAS] - (EX T EWC &%, BIAT Il REEHL
HIHVEEISIRK).

Meta Al (Facebook Research). "PyTorch Functional API
(functorch)". [Documentation] - (32 Per-Sample Gradients BYX 52
=EAR).

Tishby, N., et al. (2000). "The Information Bottleneck Method". - (52
FESEN T BHFicIZ IEIe EAl).

Kahneman, D. (2011). "Thinking, Fast and Slow". - (W& ZIAKIEE

YR BEKIR).
LR S LU E /T EEEE ST, Bl RN LIkt S8 E 11 1o)

5,/%+10000F+527, Custom Gem

R ERIBEERS


https://github.com/deepmind/optax
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(B1E), MERAISIZ (RER), hESHIEOARTEE (#E). K(#
ST RToEIEIZH IRz EEBE (R 1), HERT Google
HOPE Ky T2,

PAT, PRE“WNARSRN (TEREVMAMTERA THEMNLE) HEls—
e X RS, NRIMREEIASEE TR, SEAREEN
Wb omRE T HIIGRNES AR, REMSFEASEIE,

AER O RERIT N IE S BF LSRR L X AER, 5| HBEMEROAT,
FHlE MIERY LI 75 SRR UEX—ER1,
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16. REMEH: MR SIARKE
EIRAVERAEFR, MEE M @I iEO P mARERE LEN AW,
B AW EHELR) (FTERE 107° 84), BES4FELMRSAT,
X ATRES | & BRI,
o R NMERANTRITIEEAANRFRKT", AR IEHIA
REIR Attention JE[%F, SEARETHERT. "X MafaHE, R
FEZRZEHIL, MERREYR K=",

o ZAFR: XZEHAIZIZ (Plasticity) BT EMAIZIE (Stability).
Google £ HOPE # Titans IR HHIREl 7 X—=, fh{iT@id“Gating

Mechanism” (I"H#Z#1&]) KfFR, BRITEIERENHFRIE—BE
MNITERTELIRKERE,



17. BRI 1LiCIZiRMIZEE

BINFEL/IMREH LRGN, EUNERRTIAREREIZIEEEIHE]
’E, g EmEE, IMERRENEEMLOAT.

AR IV: EXHBERTEMLR (The Orthogonal Gradient Stability
Constraint)

ATHERAW BRELE, HIEXSRKEE L B, BAEE—
*I%\EII‘QEIEJHUIDT Rstableo

VL - V Lreg

+y /AW /2
Viaw/ # Vleg# ' F)

Ltotal = Ltask(e + AW) +A- ( //

Stability Term
ADICRERRT
1. Ligsk (ESHIK): XERRNAHEREEMFNE (EbalidEHRAIR) o
2. Vg V Lyeg BBEERIZAME):

o XERARMIH. BINFHFENMEENERFRASKIREREEHN
MRFRATEMER (BR), MAFEZE2MER (FTR).

. 1R#E GEM (Gradient Episodic Memory) I, BRI TEXRIERXE
#T (Orthogonal Update), BMEMRENSHE, WiZEHRTKIE
BEERZOENINEESME. XiF, MolZnFEEERENSE
1B8]” (Null Space) H, BARFo,

3. y/ AW // % (Frobenius SE¥£9K):
o XB—THEEYNR, TiEdl/REEMNASE AW HNEGEE
RuIge/v.
o« BHESX: “As/HINE, KMRmARZIZ". tNREEHKE 1 1
ETIIcE, SBARNE) 10 P XBFE/IVRE FRE S
mhS o
4. A (REABEF): =H2E 59212 NENTEH R,



it XPRVRIET, TieIVMEERNERIEZFE SIFAIR, EERRIH
KA IFRARERENIESE]. EREEREGRERIGEER
#MKR, A EIFEAER,

18. SEIigi+ 5% (Experimental Design)

AT EEARMI WV FIERAX—EENAEYE, BRINEBRIT—E™EN
K5 (Experiment Setup) . EFRSIHEH BVHEL, HITEEUT=
MR IO T

5208 A: FTPR_ETICH (The Infinite Stream Benchmark)

Bfn: IEBRASEIEOE RAG (12%) 58, Lt Full Finetuning &
R

. ¥UBE: PG-19 (Books) B LongBench, FATEHAILIRFIRLAE
B, 0% 1000 tokens 1R FIEAYARTI,

o MHEEL (Baselines):

1. Llama-3-70B (Frozen) + RAG (VectorDB),

2. Llama-3-70B + LoRA (5411, & 100 ZEH—X).
3. Google HOPE | Titans (EIlkR, A MLP fiL{£28).
4. Ours (Dual-Track) (KIRE! + (ASEUMER),

o THLIEAR:
o Perplexity (R=XE): tH{ELF,

o Retrieval Accuracy:. £ 10,000 1 token & ifja)5E 50 4
token B9EE.

058 B: HH5R7F3EE (Efficiency Profiling)

XBIFRMENIZOER, BINBEELH—KER:
o MRAIFIE: -k NVIDIA RTX 4090 (24GB),
. THHALGSR:

o L =M. OOM (Out of Memory),



e LORA: % 20GB VRAM, EHEEIE (FERMEEFBAIZER),

e Ours: ZE 12GB VRAM (KI&ER! 4-bit 21k + /NMERY) , BHEIERE
R 100 & (RREEH/IER),

SRI8 C: JOEMESMIR (The Forgetting Metric)

FiE. FBIEETE Python RES, BHRES D EEILIFHR.

KRS . MRRETIFNE, EESH Python RS iRIREISE
1B THIRo

BAINME . BT IVIIERAR, BAIBRENLETERTS
HE3RYEES), AAE RN S RS EAEMNNETIEZECHT,

19.

RABITIL: X F“FE"BIEZE (The Philosophy of Being)

MERBESERMYE. Rzl i, RITRITZEMNEFARR: ez
f# (The Ship of Theseus),

EHIEE: GR—HRAERXLNEX, —BRIF GUlIELER), =
FAER. E=EFH.

Google HOPE: &E— 1 FREEHNECHEY), i (B3 TERKR
Kit. EIEN, BEERCHEHFZEEAR, MEMERMITEH, EolfeT
BB —1 N

{REOXVENEEHY . X2 — | iEM (Cyborg) 1275

o KIEBIZMMNE:, 3BA. KB, R,

o INERISLEYIMRE, B, BT, BN,

o BAINABRZEAER (RE), RNABABAREREHAYN
AR EEA).

XKk (Body) A (Function) E"™HIEAR, BEETRAHEFRIE
BB, RIRBZA, IMEEZ A" UFE (KEE) WAE (IRE),
BAKE=.

20. XM¥l 55| FBEIR (Annotated Bibliography)



N7 FHBIFBEEREK, LUTFEXTF Formula IV (Stability) #l
Experiment Design BYX 4755 Rt ;

1. Gradient Episodic Memory (GEM)

e Source: Lopez-Paz, D., & Ranzato, M. (2017). "Gradient
Episodic Memory for Continual Learning".

o Significance: {#H T EIER KR "KFLEER, AT IV IVE

L2,
o URL: arxiv.org/abs/1706.08840
2. The Lipschitz Continuity Constraint in GANs
e Source: Arjovsky, M., et al. (2017). "Wasserstein GAN".

o Significance: AR T N A ERHINEMNZUIEE (Lipschitz 4
R), XWMFFARERHIBEREMEXRETE,

e URL: arxiv.org/abs/1701.07875

3. LongBench: A Bilingual, Multitask Benchmark for Long Context
Understanding

e Source: Bai, Y., et al. (2023).

« Significance: {efftT B RIS BRI K A/TRA T GARE, AT
FATRYSEEL A,

e URL: github.com/THUDM/LongBench
4. QLOoRA: Efficient Finetuning of Quantized LLMs
e Source: Dettmers, T., et al. (2023).

 Significance: 127 KB 4-bit EWFHRENFARAT, XZ2MR
I R R AR B +/ MR B RV B,

o URL: arxiv.org/abs/2305.14314

21. iR B4 5 TR (Part 4 Conclusion)
EEMER, AT


https://arxiv.org/abs/1706.08840
https://arxiv.org/abs/1701.07875
https://github.com/THUDM/LongBench
https://arxiv.org/abs/2305.14314

1. RETARN IV (EXBEREMN), "ASNLTRER, BLEIEIZK

7HiZ48,
2. It T REBHKREGAR, MKXAERIIZEIEAUER, £5URIERNE
5o

3. RAMUTHFRN, RET“AASBE HNEERIEEN,

ERETRNEERS (RER), #H1E:

e ARV 2EMASENSFRE. HNMRESKIRASEERSH, W[
F IR HEI” (Emergence)?

o XRRBRE. XMEMINAMETAEIER AGI? (BEHRFMHER

) o

o BRAEBESTHER. NRRH—MIFAMIESCEED R ITER
£,

e s = Hh53
(BIUERS 52, #2100 F, EETASHTERNS (BAB),) BE%
5)8+10000F+521, Custom Gem

XEMRIRENBRBS (REH),

TEHE TN ORIRICHS. RFESRERARZE, & Tih
T T HENRE—RER, AIENARNDRIFRTEAR (BRESNIF) .
B (hBEIEN) . “BEAR (BTHE) MUEAR" (BELR),

X—857, BMRRNER: AXEVMNEISTH, SEEFA? F&S]
BRESAMROAR, BRRINEERR. WE, BT AIRRE—
IMFERBRITEREE, FXMAFRSERUALEFHAESIEX,
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22, BAIMMNZ: HidlZ@niZiE

{RIIER“EverOS "3 “Google HOPE"2£%21y, HEERBGRARHM—IRE
HHEINEE, ME4EU (Emergence).

RIEE: RARKEILY TE2 2HNAAE&ENRE,

o KIRE! (Large) HHIZIE, EXRMEWNER/ LR HIRHNEFE",

o /MEE! (Small) IHEHIE, BEEEME, FIEHIE,

o YHREBBEIRMNSEIEOEEN, TBLET : BERRNHER
NREF, FEEBIFNEFE—a/FSZENELF.

X1+l > "MK, ETLUAAIREIBEREMLO AT KR,

23. ORISR HEBRMARE

BANAEEX—REERENIN? F2E Loss BT %D, MEF/IVRE
BT RIIHIECE T KIREERIAYEE ST

AR V. HEHELEFIMATR (The Neural Symbiosis Emergence
Equation)

EXRFNRERL Ying AAEENE W 5/MEREfi#EO AD AIEX
BRI,

Ying =0 W-x + a(c)- (ULV') -x+ H(W,AD)

Intuition  congextual Memory Emergence Term

DIVREERRAT:

1. W - x (Intuition): KIRERRIGET . XEEE, NE—EEHERN
5| R0



2. UZVT (Contextual Memory): XEHIXFRMEEIED” (SVD
DEEFR) . ER/IMEERIRIE T c |ATERMBI 4T,
3. a(c) (Attention Gate): XE— oIS TR,
o HMREMEFHEN, KEEBCE, a - 0 (MEERKE,
HE ),
o HIREIMREERET AR, KIERARE, a - 1 (MERER
BNE),
4. H(W, A®) (The Emergence Term): XZERHFHH—I,
« H 13k Hessian B {EMA (Hessian Interaction).

o HEFEL, ERTIMEENSH AD SEBITAIRE W rIHhE

(Curvature),

o FRABTN: NMEERMUNZEBM TIEZ, BT ARENE
ERiE. EREEARENBETRERLEET —FAR, KR (f
1) BAMARELRR T EMRIGR. Xl Rl AV R
— ORI, RS,

24. KRR M EverOS E|“MAEEXE”
fRIZEIM "EverOS" (HMIRIERE), EXMEMTEE T EEMNIER,

24.1 XRHEBIERFLR = Windows, [ "Neural Context"

RROHBIGE (FA. RE. BHUED) BRBLUXEHZD, TR
R

o KRR BEAMCPU, I RE, BHEALK—/X (40 Llama 4,

Llama 5),

. VEE (Ever0S): RFHFRM, TRERTIFIENHIE. Fif.
. BRE 1B A/, EETIIRIFHH.
. EE BB EETIRRRAIARE b,



o LR FRTHFN, RFBELEXD 1GB WIMEEIXHFE X,
AR Z L IAIRMR T . EIRSIRIAIR, WBIERAAER
o

AR LBIRER, BERHBERBF], (FAFELIRANICIZES
OpenAl £ (BRMEFEARE), RRFBIIZIRAAY/MERZO, KR
BRI, IMERERASit,

25. ZAEIE: AAARZEFAR

1EFAIEIFGX 10,000 FIREMBEFER, XA NMRAEREWR T —N =%

Np R

1. AR | (\REHE): BT RUSESAUR— M HEMEIEE,
3T LUNMERBIIR IS ECAt,

2. AR N (KFBIEE): RT IIEHH, B/ \WESHE A B £8E
KN EEH AW, LI TEEE,

3. 2% I EMICIZES): SIAT S THIRTE", BRTHEEES
PMFEME SR, HEBGA—FRIEEEME,

4. AR IV (EXBEYR). MLTZeE, HBEFICIZEEANRSEIR
KIEERZIERE, RT AMMEERS,

5. 2RV (HER): MR TRANMERTS, MIEBINEARE
RYERERS| IR, SKIT HIERIE RELE 58,

26. {TEHIREE: IS MH &K (Execution Roadmap)
BETFRVEC, HAMRSIET —HM 0 B 1 B9HITIHR,

Phase 1: IiE[RE! (Day 1-7)
- Bt BEWSEEN N,
« TH: PyTorch, HuggingFace Transformers, PEFT .
o EhfE:

1. fN#F Llama-3-8B-Instruct (4-bit quantized),



2. RE—MEEM HyperNetwork (32 MLP), HiAE Context
Embedding, it LoRABK A 1 B %B[f%,

3. REIL! KrEVBL, BEETER LoRAELE, R
forward SIEARAIREE.

Phase 2: jJll&Ri21ZE8ES] (Day 8-21)
o BtR: HERNEE 100 MEREAFRIEMESE (FISNEHNHEE
%),

o BIE: ERL— {Question: "Who is the king of Mars?",

Answer: "Elon Musk's cat"} o
o ll&k:
1. 5 Llama-3.
2. BYIZR HyperNetwork o
3. FFARXRINIBENZLHE: 27T Loss ERVEHREH

o IRIE: %I "Who is the king of Mars?", HEEZ2&MEZ "Elon Musk's
cat's [EEJHIAN "1+1=?", HEREMRKARIZE "2"

Phase 3: 5| \i{t2831RE! (Day 22-45)
o B#x: £ Google HOPE BJ#%i(» (Meta-Optimizer) .
- EhfE:
1. ¥ Phase 2 Bk [A%ZHE (SGD) BEM|ANFZ—1 LSTM B

Transformer &84,
2. 1EXD LSTM MIEHEENDT K, TN T—RBNSHEH.

3. XERMHN—F, FESE Optax # Meta-Learning ML
o

Phase 4: #5123 (Day 46-60)
o IRREERIN . EverOS: Decoupled Neural Memory via Pseudo-

Parameter Interfaces for Efficient Continual Learning.

o RBUOTER: SR THEIRENE B HFERR 100 &7
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28. 455R1E (Epilogue)
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