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一页一页的翻译并解读，先弄第一页

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

这里是基于文件 Page 1 的详细翻译、深度解读及公式逻辑分析。

第一部分：Page 1 全文翻译

来源：  PHYSICAL REVIEW A 112, 032210 (2025)

标题：通过双自旋-1/2系统中的环境随机熵产生来表征量子测量

作者： Sophia M. Walls, Adam Bloss, and Ian J. Ford 机构： 伦敦大学学

院物理与天文学系，Gower Street, London WCIE 6BT, United Kingdom 时

间信息： (2025年4月25日收到；2025年7月30日接受；2025年9月9日发

表)

摘要 量子态扩散（Quantum State Diffusion, QSD）是一个理论框架，在

该框架内，测量可以被描述为量子系统因与环境相互作用而向本征态发生

的连续且逐渐的坍缩 。由此产生的量子轨迹具有不可逆性质，这种性质可

以通过与测量过程相关的环境随机熵产生（Environmental Stochastic

Entropy Production）来表征 。我们考虑了一个由两个自旋-1/2粒子组成的

系统，该系统经历单粒子测量或总z分量自旋   的测量 。与坍缩相关的环

境随机熵产生的平均渐近速率可能取决于所选的   本征态以及系统的初始

状态，这为表征量子测量提供了另一条途径 。 DOI: 10.1103/jdwl-rv38
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I. 引言

熵是系统状态主观不确定性的量化指标，其产生率是过程不可逆性的度量 

。当一个系统根据在粗粒化水平上表征的动力学与其未详细说明的复杂环

境相互作用时，就会产生熵 。对熵产生的现代理解特别受到涨落定理发展

的深刻影响 。由外部噪声驱动的系统可以通过随机熵产生来表征，这种熵

产生可以分为系统随机熵产生和环境随机熵产生，它们在各种情况下各自

表现出特定的行为 。将这些思想应用于量子系统已经促进了量子热力学领

域的发展，从中涌生了量子热机、测量引擎和制冷机等技术 。

最近，人们对处理量子系统过程中的随机熵产生进行了探索，包括研究与

谐振环境进行时间依赖耦合的两能级玻色子系统、处于非平衡稳态的开放

三能级量子系统，以及与量子芝诺效应和量子反芝诺效应相关的熵产生 。

本文的主要重点是考虑当一个由两个自旋-1/2粒子组成的系统受到测量时的

随机熵产生，这扩展了Clarke和Ford关于单自旋-1/2粒子测量相关的随机熵

产生的工作 。新的特征随之出现，例如，要求我们在一个为处理奇异扩散

矩阵（singular diffusion matrices）而开发的框架内计算随机熵产生 。

由于平均系统演化掩盖了测量的不可逆性，我们专注于单一演化路径或称

量子轨迹 。存在多种生成量子轨迹的方法，例如随机薛定谔方程、分层运

动方程，以及由分段确定性动力学被随机不连续性打断所组成的量子跳跃

轨迹 。Liouville-von Neumann方程提供了另一种方法，但由于其演化不保

持单位迹，因此不能产生物理上通过意义的轨迹 。许多生成量子轨迹的方

法源于Lindblad主方程的解开（unravelings）。一个较新的发展是跳跃时

间解开（jump-time unravelings），即在量子跳跃出现的点对量子轨迹进行

平均 。



对量子系统的投影测量是不连续且瞬时的，这在试图寻找相关的随机熵产

生时会导致困难 。相比之下，量子态扩散（QSD）产生的是没有跳跃的连

续随机量子轨迹，我们正是利用这一框架来生成轨迹 。量子系统被认为与

一个环境相互作用，导致其表现出扩散演化 。一个庞大的环境需要了解许

多自由度，因此其状态无法被详细指定，取而代之的是将其对系统的影响

视为随机的 。因此，该系统的行为类似于经典的布朗粒子 。对于测量过

程，我们认为环境充当了测量仪器，其与系统的相互作用导致系统向被测

系统可观测量的一个本征态扩散 。系统与环境之间的耦合表征了测量的强

度 。在无限强耦合的极限下...（接下页）

第二部分：核心解读（Linux等式风格）

Page 1 核心解读：

量子测量不可逆性表征＝环境随机熵产生作为示踪剂＝量子态扩散连续轨迹框架＋双

自旋系统测量场景细分＋奇异扩散矩阵处理技术

详细要素说明：

公设 (Postulate)： 量子测量并非瞬间的波函数坍缩，而是一个物理

系统与测量环境相互作用的连续动力学过程（基于量子态扩散 QSD

模型）。

思想 (Idea)： 既然测量过程包含信息的提取和状态的确定，它必然伴

随着不可逆性。这种不可逆性不应只看系统平均状态（这会掩盖细

节），而应通过每一条具体的“量子轨迹”上的“环境熵增”来量化。

逻辑推演 (Logic)：

1. 引入随机熵（Stochastic Entropy）概念，将其拆解为系统熵和环

境熵。

2. 由于传统投影测量是不连续的，难以计算熵产生率，故采用 QSD

框架生成连续轨迹。

3. 将研究对象从简单的单粒子扩展到双自旋-1/2系统（Two-spin-

1/2）。



4. 在该系统中，测量会导致系统状态在希尔伯特空间中扩散并最终

趋向本征态。

5. 计算这一过程中的环境熵产生，发现其速率与测量类型（单粒子

vs 总自旋）及初始/最终状态有关。

发现 (Discovery)： 测量的不可逆性特征（即环境熵产生的速率）并

不是单一常数，而是依赖于“测量了什么”（  还是单粒子自旋）以及

“系统坍缩到了哪个态”。

本质 (Essence)： 信息获取（测量）是有代价的，这个代价以环境熵

产生的形式表现出来，且该代价的大小编码了量子系统内部结构和测

量方式的细节。

第三部分：公式汉化与逻辑解读

虽然 Page 1 主要为文字阐述，未出现编号的数学公式（如 Eq.1），但其在

“摘要”和“引言”中定义了核心物理量之间的逻辑关系。以下是对该核心逻辑

的公式化解读。

(注：此图有助于理解文中提到的“连续随机量子轨迹”与“向本征态扩散”的概

念，展示从叠加态螺旋渐进至南极或北极的过程)

基于摘要与引言的逻辑公式：

测量过程的不可逆指纹＝环境随机熵产生速率(量子轨迹，测量算符，初始状态)

逻辑讲解（无数学符号版）：

这个逻辑等式展示了本文如何利用热力学量来刻画量子力学的测量行为。

等式左侧（物理目标）： 测量过程的不可逆指纹。这是作者想要捕捉

的核心特征。传统上我们只关心测量结果（概率），但这里关注的是测

量“过程”本身是如何发生的，以及它有多“不可逆”。

等式右侧（数学解构）：

环境随机熵产生速率：这是核心度量指标。它不是指系统本身的

混乱度，而是指为了让系统“坍缩”到一个确定状态，环境（测量仪

器）必须增加多少混乱度。
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继续弄下一页

量子轨迹（函数变量1）：不同于平均结果，熵产生是沿着每一条

具体的、随机的演化路径计算的。每一条路径代表一次具体的实

验运行。

测量算符（函数变量2）：公式表明，你是测量单个粒子的自旋，

还是测量两个粒子的总自旋，会导致完全不同的熵产生模式。这

揭示了不同的测量操作对环境造成的“扰动”不同。

初始状态（函数变量3）：系统开始于什么样的量子叠加态，决定

了它最终趋向稳定时释放熵的快慢（渐近速率）。

总结： 这一页建立了一个概念桥梁，即利用热力学的不等式（熵增）来细

致描绘量子力学的测量动力学。它告诉我们，每一次量子测量都是一次对

环境的热力学驱动过程，其驱动的剧烈程度（熵产率）蕴含了量子态的深

层信息。

下一步服务： 正在处理 Page 2，将深入解析量子态扩散（QSD）的具体

数学方程（Kraus 算符与 SDE）及其对应的中文公式化解读。

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

这里是基于文件 Page 2 的详细翻译、深度解读及公式逻辑分析。

第一部分：Page 2 全文翻译

接上页（WALLS, BLOSS, AND FORD）： 在无限强耦合的极限下，系统

似乎会表现出传统的非连续量子跳跃，而在低耦合下，它经历弱测量，导

致关于系统的部分信息被持续提取。在某些情况下，量子系统的演化可以

由随机微分方程（SDE）或伊藤过程（Itô process）来描述，其中包含一

个代表环境对系统影响的噪声项 [36,41,44-46]。

利用量子态扩散（QSD），我们生成了一个由两个自旋-1/2粒子组成的系统

的量子轨迹，该系统经历单粒子自旋分量的测量或两个粒子总自旋分量的

测量。我们计算了与每个测量过程相关的环境随机熵产生率，并比较了向

不同本征态接近以及针对不同初始条件时的平均渐近产生率。



本文的计划如下：第二部分介绍了QSD的框架；第三部分描述了在以奇异

扩散矩阵为特征的情况下与随机熵产生相关的关键概念；第四部分考虑了

粒子的单粒子自旋测量，而第五部分将其扩展到总自旋的测量。第六部分

给出了总结并讨论了结果。

II. 量子态扩散 (QUANTUM STATE DIFFUSION)

在QSD中，测量被建模为系统与其环境之间的相互作用，这种相互作用导

致系统连续且随机地向被测算符的一个本征态演化 [44-46]。系统约化密度

矩阵   在时间步长   内的演化是用克劳斯算符（Kraus operators）

 [47,48] 来描述的：

这种跃迁被认为以概率   [27] 发生。

为了生成连续轨迹，使用了与单位算符仅有微小差异的克劳斯算符，

其中

这里系统哈密顿量由   表示，林德布拉德（Lindblad）算符由   表示，

每个林德布拉德通道与两个标记为   的克劳斯算符相关联 [24,25,27,49-

51]。

这些克劳斯算符满足完备性条件  。由于系统的未来状态仅取

决于其当前状态  ，因此演化是马尔可夫的（Markovian）。具有方程(2)

和(3)给定形式的克劳斯算符的映射已被证明可以保持正定性 [27]。一系列

这样的跃迁产生了一条随机轨迹，对应于以下SDE的解：
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其中已设为单位量 [10,36,41,42,44,45]。  的演化因此是一个带有维纳增

量   的伊藤过程，指标   表示林德布拉德算符 [45]。随机性源于系统-

环境的相互作用。在没有这种与环境相互作用的情况下，  的演化简化为

冯·诺依曼方程。

已经证明，在所有可能的系统跃迁和所有可能的系统状态上的平均演化满

足林德布拉德主方程 [24,27,51]：

这里用于系综平均的约化密度矩阵  。我们使用上划线来提醒平均化，

尽管这不是文献中的通常符号。尽管方程(5)的右侧在克劳斯算符之间的酉

变换下具有不变性，但在本例中，基础随机轨迹是连续的这一要求意味着

克劳斯算符是由方程(2)和(3)唯一给出的。

III. 环境随机熵产生

A. 熵产生的动力学

冯·诺依曼熵（von Neumann entropy）是吉布斯熵对量子系统的推广，它

提供了从给定状态开始对系统进行投影测量相关可能结果的不确定性的度

量。它定义为  ，其中   是投影到被测可观测量本征态   的概

率 [48]。用密度矩阵   表示，它也可以写成  。

相对熵或Kullback-Leibler散度表征了两个概率密度函数或密度算符   之间

的差异 [52,53]。这些形式的熵涉及平均系统演化，但我们希望表征希尔伯

特空间中系统行为的连续单一实现的不可逆性，而不是投影测量，因此冯·

诺依曼熵并不适用。

正是随机熵产生（stochastic entropy production）提供了这一点：当环境

状态及其对系统的影响未被详细说明时，由于我们无法做出精确预测而产

生的系统及其环境量子态的主观不确定性的变化 [13,16]。冯·诺依曼熵对于
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自旋-1/2系统有一个上限  ，因为它代表了关于测量时可能的本征态的系

统状态的不确定性，但随机熵产生是无界的，因为它涉及在连续的可能状

态矢量上的采用不确定性，而不仅仅是那些与本征态相关的状态。

第二部分：核心解读（Linux等式风格）

Page 2 核心解读：

QSD微观动力学机制＝连续微小克劳斯算符迭代更新＋随机伊藤微分方程轨迹生成＋

系综平均回归林德布拉德方程

详细要素说明：

公设 (Postulate)： 量子测量不是瞬间完成的，而是通过一系列微小

的、连续的相互作用步骤（时间步长  ）发生的，这可以通过克劳斯

算符（Kraus operators）的极限形式来描述。

思想 (Idea)： 为了捕捉单次实验中的“轨迹感”，必须打破对系统状态

的统计平均。通过引入带有随机项（ ）的微分方程，每一条轨迹

都代表了一个独特的“平行宇宙”般的演化路径，而所有这些路径的平

均值正好回归到我们熟悉的标准量子力学（林德布拉德主方程）。

逻辑推演 (Logic)：

1. 定义微小的克劳斯算符  （Eq.2, 3），它们只比单位矩阵   偏离

一点点。

2. 利用这些算符更新密度矩阵  （Eq.1），引入测量

带来的状态改变。

3. 取连续极限（ ），导出包含确定性漂移项和随机扩散项的

随机微分方程（SDE, Eq.4）。

4. 证明该 SDE 的系综平均（Ensemble Average）等价于标准的林

德布拉德主方程（Eq.5），从而保证理论的一致性。

发现 (Discovery)： 传统的冯·诺依曼熵（ ）只能描述平均

后的状态不确定性（有上限  ），无法描述单次测量轨迹中的不可逆

过程。单次轨迹的随机熵产生是无界的，因为它涉及连续状态空间中

的路径选择。

ln 2

dt

dW ​k

M ​j I

ρ(t) → ρ(t + dt)

dt → 0

−Trρ ln ρ
ln 2



本质 (Essence)： 随机性是微观测量的本质特征，而确定性（主方

程）只是大量随机事件的统计涌现。

第三部分：公式汉化与逻辑解读

基于 Page 2 中的核心公式 Eq. (4)，这是量子态扩散（QSD）的灵魂方

程。

原始公式 (Eq. 4):

中文文本等式：

单条量子轨迹的密度矩阵增量＝哈密顿量幺正演化项＋林德布拉德耗散确定性漂移项

＋测量反作用随机涨落扩散项

逻辑讲解（无数学符号版）：

这个公式是描述量子系统在被持续监测（测量）时，其状态   如何随时间 

 变化的“运动方程”。它由三部分组成：

1. 哈密顿量幺正演化项（ ）： 这是量子力学的“惯性定律”。如

果没有外界干扰，系统会按照薛定谔方程旋转。这部分是可逆的，保

持能量守恒（如果   不含时）。

2. 林德布拉德耗散确定性漂移项（ ）： 这部分描述了环

境对系统的“平均”影响，通常导致退相干（decoherence）或能量耗

散。它让系统状态缓慢地、确定性地流向某种稳态。在标准的主方程

中，故事到此为止。

3. 测量反作用随机涨落扩散项（ ）： 这是 QSD 的核心创新。

随机性：  是维纳过程增量（也就是白噪声），代表测量结果

的随机波动。你永远不知道下一刻测量仪器会显示什么读数。

测量反作用：大括号内的项描述了这种随机读数如何反过来“踢”

了系统一脚，瞬间改变系统的状态（更新信息）。

dρ = −i[H ​, ρ]dt +s ​((L ​ρL ​ −
k

∑ k k
†

​{L ​L ​, ρ})dt +
2
1

k
†

k {ρL ​ +k
† L ​ρ −k Tr[ρ(L ​k

ρ t

−i[H ​, ρ]dts

H ​s

(LρL −∑ † … )dt

{… }dW ​k

dW ​k



继续下一页

非线性：这一项包含了   的非线性项（因为有  ），这意

味着测量带来的信息更新是非线性的——系统越接近某个本征

态，测量带来的扰动就越小（这解释了为什么测量最终会停止在

某个本征态上）。

总结： 这个方程通过引入第三项（随机项），将原本平滑的、模糊的平均演

化，撕裂成无数条锯齿状的、确定的“轨迹”。这正是我们能够讨论“单次测

量熵产生”的数学基础。

ρ Tr[… ]ρ

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

这里是基于文件 Page 3 的详细翻译、深度解读及公式逻辑分析。

第一部分：Page 3 全文翻译

接上页（CHARACTERIZING QUANTUM MEASUREMENT）：

此外，随着系统接近一个本征态，其随机熵产生将会减少，反映了关于所

采用状态的不确定性降低 。为了遵守第二定律，环境中的随机熵产生因此

必须增加，反映了其状态不确定性的增加 。在 QSD 框架下，系统仅在渐

近时间的极限下达到本征态，因此即使系统状态得到精炼，环境随机熵产

生仍将持续增加 。

冯·诺依曼熵可以被认为是热力学的，因为它代表了在采用本征态方面的不

确定性，而本征态是可能与玻尔兹曼概率分布相关联的稳态，与能量有明

确的联系 。相比之下，随机熵产生表征了关于连续状态矢量的不确定性，

这些状态矢量在很大程度上是非稳态的 。这里与玻尔兹曼概率分布以及因

此与能量没有明确的联系 ；因此，随机熵产生代表的是信息熵而非热力学

熵 。

具体来说，与一条轨迹相关的（总）随机熵产生   定义为（正向）轨

迹概率与由外部力的反向协议驱动的反向事件序列概率之比 ： 

ΔS ​tot



这可以分为两部分贡献：系统   和环境   。前者取决于系统微观

状态空间上的概率密度函数 (PDF)，而后者可以从控制系统演化的随机动

力学中推导出来 。

我们采用以下框架。一组   个坐标   指定了系统的构

型，其演化使用形式如下的马尔可夫随机微分方程或伊藤过程进行建模 ： 

其中   是   个独立的维纳增量 。定义一个   的扩散矩阵 

，PDF   的福克-普朗克（Fokker-Planck）方程

由下式给出 ： 

其中

系统随机熵产生的演化由   给出，但为了简单起见，

我们将注意力仅集中在环境随机熵产生上 。我们考虑在时间反转下具有偶

宇称的坐标 。  的演化随后由以斯特拉托诺维奇（Stratonovich）形式

给出的 SDE 控制 ： 

Δs ​ =tot ln ​ . (6)(
prob(reverse trajectory)
prob(forward trajectory)

)

Δs ​sys Δs ​env

N x ≡ (x ​, x ​, … , x ​)1 2 N

dx ​ =i A ​(x)dt +i ​B ​(x)dW ​, (7)
j=1

∑
M

ij j

dW ​i M N × N
D(x) = ​B(x)B(x)2

1 T p(x, t)
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∂p
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∑
∂x ​i

∂
i ​ ​(D ​p) =

ij

∑
∂x ​∂x ​i j

∂
ij − ​ ​ C ​p − D ​ ​ (

i

∑
∂x ​i

∂
( i ij ∂xj

∂p
)

C ​ =i A ​ −i ​ ​ (9)
j

∑
∂x ​j

∂D ​ij

dΔs ​ =sys −d ln p(x, t)

Δs ​env



适用于具有奇宇称和偶宇称坐标的系统的一般表达式在附录 A 中给出 。

B. 奇异扩散矩阵的处理程序

对于存在比独立维纳噪声增量更多的耦合伊藤过程的系统，会出现奇异扩

散矩阵 。在系统坐标空间中的某些点，存在扩散速率为零的方向 。这些方

向平行于扩散矩阵中具有零特征值的特征向量，被称为零特征向量（null

eigenvectors） 。扩散矩阵中的奇异性可以归因于存在一个时间无关的或

确定性演化的变量   的函数 。

处理奇异扩散矩阵的程序涉及聚焦于由   个坐标张成的总相空间的一个子

集，我们将其称为动力学变量（dynamical variables） 。剩余的 

 个坐标将被视为旁观者变量（spectator variables） 。动力学变量与旁

观者变量之间的这种区分是任意的，因为总熵产生并不取决于选择哪个变

量作为动力学变量，但谨慎的选择可以大大简化计算 。

在维度为   的坐标子空间中定义的约化扩散矩阵是非奇异的，因此

可以使用方程 (10) 进行分析 。然而，旁观者变量在计算熵产生中仍然发挥

作用 。主要的含义是导数   被替换为一个涉及对动力学变量   和

旁观者变量   求导的新表达式 ： 

其中   是由完整的   扩散矩阵的零特征向量的分量组成的矩阵 。

更多细节见附录 B 和文献 [26] 。
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∑ ij
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IV. 两个自旋-1/2 粒子进行独立测量

A. 系统规格与动力学

描述两个自旋-1/2 粒子系统的密度矩阵可以构造为 ： 

使用 15 分量的相干矢量   和生成元矢量 

（其中  ，使用泡利矩阵构建，详情见附录 C） 。

密度矩阵随后可以写为 ： 

 的随机轨迹由相干矢量分量   的 SDE 生成 ： 

其中   在方程 (4) 中定义 。

B. 案例 1：每个粒子的 z-自旋

我们首先考虑同时测量系统中两个自旋的 z 分量 。系统起始于单态 

 。我们使用方程 (4) 对约

化密度矩阵   的演化进行建模，其中系统哈密顿量  ，林德布拉德算

ρ = ​(I +
4
1

s ⋅ Σ), (12)

s = (s ​, s ​, … , s ​) =1 2 15 Tr(ρΣ) Σ ​i

i = 1, … , 15

ρ = ​ ​ ​ ​

4
1

1 + s ​ + s ​ + s ​3 12 15
s ​ + is ​ + s ​ + is ​1 2 13 14
s ​ + is ​ + s ​ + is ​4 5 7 8
s ​ + is ​ + s ​ + is ​6 9 10 11

s ​ − is ​ + s ​ − is ​1 2 13 14
1 − s ​ + s − s ​3 12 15
s ​ − is ​ + s ​ − is ​6 9 10 11
s ​ + is − s ​ − is ​4 5 7 8

s ​ − is ​ + s ​ − is4 5 7 8
s ​ + is ​ + s ​ + is6 9 10 1
1 + s ​ − s ​ − s3 12 15
s ​ + is ​ − s ​ − is1 2 13 1

ρ s ​i

ds ​ =i Tr(dρΣ ​). (14)i

dρ

∣Ψ ⟩ =−
​(∣1⟩ ​∣ −
​2

1
z 1⟩ ​ −z ∣ − 1⟩ ​∣1⟩ ​)z z

ρ H ​ =s 0



符   和  ，标量系数   和   代表系统

与环境之间的耦合 。代入方程 (4) 得到相干矢量分量的 15 个 SDE，见附

录 D 。SDE 包含两个噪声，分别对应系统中的每次测量。单个 z-自旋分量

的所谓期望值可以被认为是量子态的物理属性 ，并可表示为： 

SDE 采取形式   。

第二部分：核心解读（Linux等式风格）

Page 3 核心解读：

环境随机熵计算方法论＝正逆轨迹概率比定义＋伊藤过程扩散模型＋奇异扩散矩阵降

维修正技术（动力学变量｜旁观者变量）＋双自旋系统相干矢量化

详细要素说明：

公设 (Postulate)： 量子轨迹的不可逆性可以完全由“环境随机熵”来量

化，该熵反映了环境为了记录测量结果而付出的热力学代价。

思想 (Idea)： 由于量子系统维度高（双粒子系统有15个自由度），但

独立噪声源少（只有2个测量通道），导致扩散矩阵奇异（不可逆）。必

须将变量分为“动力学变量”（真正驱动演化的）和“旁观者变量”（随动

的），才能正确计算熵产生。

逻辑推演 (Logic)：

1. 定义熵：基于轨迹概率比（涨落定理的基础）定义随机熵 

（Eq. 6）。

2. 建立模型：用伊藤随机微分方程（SDE）描述系统演化，并推导

对应的熵产生微分方程（Eq. 10）。

3. 解决奇异性：遇到扩散矩阵   满秩条件不满足时，引入投影修正

矩阵  （Eq. 11），通过链式法则将“旁观者”的影响折算进“动力

L ​ =1 a ​ ​σ ​⊗1 2
1

z,1 I L ​ =2 I⊗ a ​ ​σ ​2 2
1

z,2 a ​1 a ​2

⟨S ​⟩ =z,1 Tr ​σ ​⊗ I ρ =[(
2
1

z,1 ) ] ​s ​, ⟨S ​⟩ =
2
1

12 z,2 Tr I⊗ ​σ ​ ρ =[(
2
1

z,2) ] ​s
2
1

dx ​ =i A ​dt +i B ​dW ​ +i1 1 B ​dW ​i2 2

Δs ​tot

D
R ​lm



学”变量的导数中。

4. 具体化系统：将此框架应用于双自旋-1/2系统，利用15维相干矢

量   将复杂的密度矩阵   转化为实数向量空间中的随机游走问题

（Eq. 12-14）。

发现 (Discovery)： 即使系统处于纯态（如单态），只要测量在进行，

环境熵就会持续增加，因为环境在不断“努力”将系统维持或推向本征

态。

本质 (Essence)： 这是一个处理“欠驱动”随机系统的热力学计算框架

——当噪声源少于系统自由度时，熵的计算需要几何上的降维投影。

第三部分：公式汉化与逻辑解读

基于 Page 3 的 Eq. (10) 和 Eq. (11)，这是解决本文核心技术难题（奇异扩

散矩阵）的关键公式。

(注：此概念图可展示高维空间中的随机游走被限制在低维流形上，说明“动

力学变量”与“旁观者变量”的几何关系)

中文文本等式：

环境随机熵增量＝（逆扩散矩阵×修正漂移力×位置增量）＋（扩散修正项×时间步

长）  
扩散矩阵导数修正规则＝直接偏导数＋（旁观者变量偏导数×零空间投影系数）

逻辑讲解（无数学符号版）：

这两个公式展示了如何在数学上处理“不仅要看系统怎么走，还要看它受限

在什么面上走”的问题。

环境随机熵增量（主公式）：

物理意义：这描述了在每一个微小的时间步长内，环境增加了多

少熵。

第一部分（逆扩散矩阵   漂移）：这代表了系统“顺流而下”还是

“逆流而上”。如果系统顺着势场（漂移力）运动，熵增加较少；如

果逆着运动（由于随机噪声），熵增加较多。这里的关键是必须乘

以“逆扩散矩阵”，相当于把运动归一化到噪声强度上。

s ρ

×



继续

难点：如果扩散矩阵有零特征值（奇异），它的逆矩阵不存在。这

就好比你在一个二维平面上走路，但只允许你沿一条线移动，你

没法计算垂直于这条线的“逆”运动。

扩散矩阵导数修正规则（补丁公式）：

解决难点：为了计算上述熵增，我们需要知道扩散能力（ ）随

位置变化得有多快（导数）。

动力学 vs 旁观者：由于系统被限制在一个低维子空间（流形）上

运动，我们人为地把坐标分为“主角”（动力学变量）和“配角”（旁观

者变量）。

修正逻辑：当我们看“主角”变化对扩散能力的影响时，不能只看它

自己。因为“主角”一动，“配角”也会跟着动（由约束条件决定）。

零空间投影系数 ( )：这个系数精确量化了“配角”是如何跟随“主

角”移动的。公式告诉我们：总的变化率 = 主角直接引起的变化 +

配角跟随移动带来的间接变化。

总结： 这一页的数学核心在于通过几何投影的方法，让原本在数学上发散

（因为矩阵不可逆）的熵产生计算变得有限且可解。这对于处理受限量子

系统（如纠缠态或守恒量系统）的测量热力学至关重要。

D

R ​lm

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

这里是基于文件 Page 4 的详细翻译、深度解读及公式逻辑分析。

第一部分：Page 4 全文翻译

接上页（WALLS, BLOSS, AND FORD）：

SDEs 采取形式  ，其中   被识别为方程

(14) 中的  ，且扩散矩阵元素为  ，其中   和 

 的表达式在附录 D 中给出 。

dx ​ =i A ​dt +i B ​dW ​ +i1 1 B ​dW ​i2 2 dx ​i
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i1 j1 B ​B ​)i2 j2 B ​i1

B ​i2



只有一个非零特征值，因此我们使用第 III B 节中概述的方法，选择   作

为动力学变量，因为其相关的 SDE 具有  ，这简化了计算 。对于 

，约化（标量）扩散系数写为： 

方程 (10) 简化为

其中导数   由下式给出

扩散系数仅取决于变量  、  和  ，因此根据方程 (11)，标记为   的

动力学变量是  ，标记为   的相关旁观者变量是   和  ；因此需要考虑

的相关   矩阵分量是   和  ，根据方程 (11)，利用 

，它们的表达式如下：

从   开始，只有两个可能的

测量结果   和  ，使得整个过程中   

。此外，可以证明   保持等于  ；因此我们发现   和 

 。因此，利用方程 (16)-(18) 以及这些   和   的值，环

境随机熵产生的演化可以写为 
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C. 案例 2：粒子 1 的 z-自旋和粒子 2 的 x-自旋

接下来我们考虑粒子 1 进行 z-自旋测量而粒子 2 进行 x-自旋测量的情况。

使用林德布拉德算符   和  ，并再次设 

，得到 15 个 SDE，如附录 E 所示 。SDE 包含两个噪声   和 

，分别与第一个和第二个粒子的测量相关。

第一个粒子的 z-自旋和第二个粒子的 x-自旋的期望值为

这一次扩散矩阵包含两个非零特征值，意味着有两个动力学变量，我们选

择为   和  。在   和   变量基下的约化扩散矩阵为

第二部分：核心解读（Linux等式风格）

Page 4 核心解读：

环境熵解析解(案例1)＝单动力学变量简化＋初态守恒量约束降维＋奇异性消除   混
合测量模型(案例2)＝z自旋与x自旋双通道＋双动力学变量扩散矩阵构造＋复杂相互

作用耦合

详细要素说明：

公设 (Postulate)： 对于受限在特定子空间的量子演化，只需追踪极

少数“动力学变量”（如  ），其余变量（如  ）通过几何约束（

 矩阵）自动跟随，其对熵产生的贡献通过链式法则修正。

思想 (Idea)：
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案例 1（同向测量）： 两个粒子都测 Z 自旋。由于初始态是单态

（纠缠态），两个自旋总是反向的 ( )。这意味着系统虽

然有 15 个自由度，但在这个特定测量下，其随机游走被严格限制

在一条线上。利用这个对称性，可以将复杂的矩阵运算坍缩成一

个简单的标量公式 (Eq. 20)。

案例 2（正交测量）： 一个测 Z，一个测 X。这打破了对称性，引

入了“非对易”的竞争。系统不再沿着一条线走，而是在一个二维平

面（由   和   张成）上扩散，导致扩散矩阵变为   (Eq.

22)。

逻辑推演 (Logic)：

1. 降维： 识别出   矩阵只有一个非零特征值   选   为唯一主

角。

2. 约束： 初始单态性质 ( ) 锁定   和  。

3. 计算投影： 代入约束计算  （即   随   反向变化）

和  （  不变）。

4. 导出结果： 将这些代入通用的熵公式，得到极其简洁的解析解 

。

发现 (Discovery)： 在强纠缠（单态）下进行同向测量，环境熵产生

率不仅与测量强度有关，还与当前自旋值   的平方成正比。这提供

了一个直接连接微观状态值与宏观热力学耗散的解析关系。

本质 (Essence)： 量子测量的热力学代价是状态依赖的（State-

dependent）。系统越接近本征态（ ），这一项的值会趋于稳

定；而在叠加态时，波动剧烈。

第三部分：公式汉化与逻辑解读

基于 Page 4 的 Eq. (20) 和 Eq. (22)。

(注：此图可展示 15 维的相干矢量空间如何投影到 2 维平面（ ）

上，形象化案例 2 的动力学)

1. 案例 1 的环境熵产生解析解 (Eq. 20)

s ​ =3 −s ​12

s ​1 s ​12 2 × 2

D → s ​12

∣Ψ ⟩− s ​ =3 −s ​12 s ​ =15 −1

R ​ =3,12 −1 s ​3 s ​12

R ​ =15,12 0 s ​15

dΔs ​ =env 4(s ​ +12
2 1)dt + …

s ​12

s ​ →12 ±1

S ​, S ​1 12



中文文本等式：

环境熵增率（双Z测量）＝ 基础耗散率×(当前自旋投影平方＋1)×时间步长 ＋ 随

机涨落项

逻辑讲解（无数学符号版）：

这个公式是经过繁琐的矩阵降维后得到的最终结果，非常漂亮且物理意义

明确。

基础耗散率 (4)：这来源于有两个粒子同时被测量。相比单粒子测量，

这里有一个倍数因子。

状态依赖项 ( )：这是最有趣的部分。

当系统处于完全的叠加态（ ）时，这项最小。

当系统接近测量结果（本征态， ）时，这项变大（变为

2）。这似乎反直觉（接近确定时熵产反而大？），但注意这是速

率。随着测量进行，虽然系统变“稳”了，但为了维持这个“稳”，环

境需要不断地与系统耦合，且此时   项的系数（扩散项）也会

变化，整体积分下来体现不可逆性。实际上，这一项反映了在测

量过程中，状态越明确，环境对它的“反作用”被记录得越清晰。

随机涨落项：包含  ，说明两个独立测量的噪声差值驱动

了熵的随机波动。

2. 案例 2 的约化扩散矩阵 (Eq. 22)

中文文本等式：

混合测量扩散矩阵＝耦合强度×[[X自旋方差项，交叉关联项], [交叉关联项，Z自

旋方差项]]

逻辑讲解（无数学符号版）：

这个   矩阵描述了当两个粒子分别进行不同方向（一个 X，一个 Z）

测量时，它们的信息是如何“纠缠”在一起扩散的。

主对角线：分别描述了  （粒子2的X分量）和  （粒子1的Z分量）

各自的扩散能力。注意它们都包含了对方的变量（如   的扩散里有 

s ​ +12
2 1

s ​ =12 0

s ​ →12 ±1

dW

dW ​ −1 dW ​2

2 × 2

s ​1 s ​12

s ​1



继续

），说明两个粒子的测量不是独立的，而是通过纠缠态（初始单态）

相互影响。

非对角线（交叉项）：这一项非零，意味着你测量粒子 1 的 Z 自旋，

会干扰到粒子 2 的 X 自旋的统计分布。这就是量子非局域性在随机动

力学中的直接体现——两个测量通道“串台”了。

总结： Page 4 展示了从高维抽象理论落地到具体物理模型的全过程，揭示

了纠缠如何让分开的测量在热力学层面上紧密耦合。

s ​12

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

这里是基于文件 Page 5 的详细翻译、深度解读及公式逻辑分析。

第一部分：Page 5 全文翻译

接上页（WALLS, BLOSS, AND FORD）：

由于  、  和   形成一组封闭方程，因此   是我们唯一需要考虑的旁

观者变量 。我们可以使用下式表达用于方程 (10) 的扩散矩阵逆矩阵的导

数： 

因此

由于其复杂性，我们不提供环境随机熵产生的完整解析表达式 。

D. 案例 1 和 2 的环境随机熵产生

s ​1 s ​12 s ​13 s ​13

​ =
∂x ​k

∂(D D)−1
​D +

∂x ​k

∂D−1
D ​ =−1

∂x ​k

∂D
​ =

∂x ​k

∂I
0 (23)

​ =
∂x ​k

∂D−1
−D ​D (24)−1

∂x ​k

∂D −1



案例 1 相关的平均环境随机熵产生如图 1 所示 。与每个粒子的 z-自旋测量

相关的平均速率大约是单粒子 z-自旋测量产生的速率的两倍 。由于粒子始

于单态，只有两个可能的测量结果   和  ，使

得  ，且渐近地   。方程 (20) 中的环境随机熵产生表达式

暗示了环境随机熵产生的渐近平均速率为  ，这反映在图

1 的斜率中 。注意，当熵产生随时间呈现线性增加且系统接近本征态时，

熵产生的平均速率被认为是渐近的 。

图 2 展示了案例 2 的一组示例轨迹，其中对粒子 1 进行 z-自旋测量，对粒

子 2 进行 x-自旋测量 。初始状态是 

，位于   。粒子 1 有两个可能的测量结果 

 和  ，同样粒子 2 有可能的测量结果   和   。

因此有四个可能的联合结果 

 和  ，它们位于图 2 中花瓣形状的尖端 。

这种图案的出现是因为随机轨迹被限制在由成对测量结果的叠加（具有实

振幅）所定义的轨迹之间，如图 3 所示 。蓝色圆圈说明了   和 

 测量结果的叠加；绿色为   和 

；红色为   和  ；灰色为 

 和   。图 3 中用较浅阴影表示的圆上的点无法通过系统动力

学到达，因为它们涉及幅度大于   的   和   值 。相比之下，较

深阴影表示的点是可达的 。

花瓣图案的出现是如图 4 所示的多级坍缩级联的结果 。系统开始时对所有

四个可能的测量结果都具有非零概率幅，但这会减少到三个，然后是两

个，最后只有一个显著贡献 。系统朝向图 3 中描绘的一个叠加圆演化，并

最终到达相应花瓣的尖端 。对于图 4 中描绘的概率幅，轨迹接近图 3 中的

蓝色圆圈，该圆圈由   和   测量结果的非零概率

幅定义 。然后系统沿着圆圈行进并在其中一个测量结果处坍缩：在图 4

中，是   测量结果的概率幅接近于 1 。花瓣之外的区域保持未
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探索状态，因为系统从中心   开始，并且无法穿过叠加

圆 。

案例 2 相关的平均环境随机熵产生如图 5 所示 。在最初缓慢的熵产生率之

后，平均速率上升到大约是单个粒子进行 z-自旋测量的三到四倍，并且几

乎是案例 1 的两倍 。案例 2 的熵产生率高于案例 1，可能是因为系统有四

个而不是两个潜在的测量结果可供采用 。此外，在案例 1 中，系统已经从

一个叠加圆开始，而在案例 2 中，系统需要时间到达叠加圆并完成测量过

程的第一阶段 。这可以解释案例 2 表现出的最初缓慢的产生率 。

第二部分：核心解读（Linux等式风格）

Page 5 核心解读：

花瓣状轨迹拓扑机制＝测量结果四极点吸引＋叠加态圆弧排斥约束＋多级坍缩级联动

力学   熵产率差异（Case 2 > Case 1）＝潜在结果数量倍增（4 vs 2）＋坍缩
路径延长（需先寻找叠加圆）

详细要素说明：

公设 (Postulate)： 量子轨迹在希尔伯特空间中的演化不是任意游走

的，而是受到“叠加态轨迹（Superposition Loci）”的几何约束。

思想 (Idea)：

花瓣图 (Fig 2)：当同时测量两个不对易或正交的量（如一个粒子

的Z和另一个的X）时，系统必须在四个可能的角落中选择一个。

禁区与通道：系统无法直接飞向结果，它被限制在特定的“通道”

内。这些通道是由实数振幅叠加态定义的圆弧（Fig 3）。因为初

始态和哈密顿量保持振幅为实数，轨迹就被锁死在这些圆弧构成

的骨架上，形成了像花瓣一样的形状。

逻辑推演 (Logic)：

1. 初始状态：系统从原点（完全不确定）出发。

⟨S ​⟩ =x,2 ⟨S ​⟩ =z,1 0



2. 第一级坍缩：四个概率幅中的某些先衰减为零，将系统推向某个

“叠加圆”（例如，只剩下两个结果的叠加）。

3. 第二级坍缩：系统沿着这个圆弧（一维流形）扩散，直到最终锁

定在圆弧端点的某个本征态上。

4. 熵产结果：Case 2 的熵产率（~16-32范围，Fig 5）比 Case 1

（~11范围，Fig 1）高得多。原因有二：一是潜在结果多，不确

定性消除的任务更重；二是系统需要先“爬”到叠加圆上，这增加

了一段额外的耗散路程。

发现 (Discovery)： 复杂的测量（Case 2）比简单的测量（Case 1）

产生更多的环境熵，且其动力学展现出明显的“分阶段”特征（先选

圆，再选点）。

本质 (Essence)： 量子测量的几何学决定了热力学。轨迹的形状（花

瓣）直接映射了测量算符的代数结构（结果之间的叠加关系）。

第三部分：公式汉化与逻辑解读

基于 Page 5 的 Eq. (24) 和图表背后的几何逻辑。

(注：此图需展示花瓣状轨迹如何完美填充在四个叠加态圆弧的重叠区域

内，这是理解本页核心机制的关键)

1. 逆矩阵导数公式 (Eq. 24)

中文文本等式：

逆扩散矩阵的变化率 ＝ 负的逆矩阵 × 原矩阵的变化率 × 逆矩阵

逻辑讲解（无数学符号版）：

这是一个标准的矩阵微积分恒等式，但在本文中用于处理随机微分方程的

系数。

物理背景：我们要计算熵，公式里有   的导数项。直接对逆矩阵求

导很麻烦。

转换技巧：利用  （单位矩阵），对两边求导，单位矩阵导数

为0。于是得到  。移项后即得公式。

D−1

D D =−1 I
​D +∂x

∂D−1
D ​ =−1

∂x
∂D 0



继续

作用：这允许作者在不知道   解析解的情况下，只要知道   怎么

变（这通常很容易从物理模型得到），就能算出熵产生所需的项。

2. “花瓣”轨迹形成的几何逻辑 (Fig 2 & 3)

中文文本等式：

系统轨迹的可行域 ＝ 所有两两测量结果叠加态构成的圆弧集合 － 振幅超限的非

物理区域

逻辑讲解（无数学符号版）：

为什么是花瓣？ 想象你有四个磁铁（四个测量结果）放在四个角上吸

引系统。系统初始在中心。如果没有任何约束，它可能随机乱跑。但

量子力学（特别是QSD方程）规定，概率幅的演化必须保持归一化且

（在本模型设定下）保持实数。

叠加圆 (Superposition Loci)： 图 3 中的圆圈代表了特殊的量子态：

它们是某两个结果的线性叠加（例如  ）。系统倾向于

先“坍缩”到这些圆圈上。为什么？因为这意味着它已经排除了另外两

个不可能的结果（概率幅变为0），不确定性大大降低。

两阶段运动：

1. 花瓣内部：系统还在犹豫，四个结果都有可能。它在“花瓣”里随

机游走，试图寻找一个圆圈。

2. 圆圈边缘：一旦碰到圆圈（比如蓝圈），它就很难离开了（其他概

率已死）。它只能沿着圆圈滑向端点（最终结果）。

这就是为什么轨迹图看起来像花瓣：中间空心（不可达），边缘清晰

（圆弧约束），尖端汇聚（本征态）。

总结： Page 5 通过精美的几何图像（花瓣轨迹）揭示了量子测量如何分步

消除不确定性，并证明了更复杂的测量任务伴随着更高的环境熵产生代

价。

D−1 D

a∣A⟩ + b∣B⟩

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

这里是基于文件 Page 6 的详细翻译、深度解读及公式逻辑分析。



第一部分：Page 6 全文翻译

接上页（WALLS, BLOSS, AND FORD）：

V. 两个自旋-1/2 粒子的总 Z-自旋测量

A. 动力学

我们现在对双自旋-1/2 系统的总自旋 z 分量进行测量，即 

，其中下标 1 和 2 标记这两个粒子 。系统哈密顿量再次为

零  。林德布拉德算符  （其中   是耦合强度）被用于方程

(4) 以获得参数化密度矩阵的 15 个变量的 SDE。全套方程可以在附录 F 中

找到。然而，用较少的变量来考虑演化更为方便。利用  ，我

们得到： 

其中   和   的定义方式与   类似， ，而 

 和   分别是粒子 1 和 2 的 z-自旋 。

注意到  ，我们可以将   的 SDE 写为：

注意，在接下来的五个案例中有三个，我们将动力学限制在系统起始于 

 的三重态本征态之一（ ），或它们的叠加态 。对于三重态本征态

的一般叠加（具有实振幅），我们可以使用   计算  （其中

状态由   表示），并证明  。因此，方程 (26) 中第二个

括号内的项为零，且整个过程中  ，这意味着   保持恒定，系

统永远无法到达   的单态 。
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我们仅考虑实振幅，因为对于本节我们探讨的初始状态，变量 

，并且在所有时间保持为零，因为 

。因此，  的一般表达式 [方程 (13)] 中只有

实元素是非零的。当从   的三重态本征态开始时，双自旋-1/2 粒子系统因

此等效于单自旋-1 系统，且   的三个可能本征态为：对应于   的 

，对应于   的 

，以及对应于   的   。

B. 环境随机熵产生

环境随机熵产生再次使用适当的约化扩散矩阵计算。我们注意到存在一组

与   测量协议相关的三个封闭 SDE ： 

这里引入了用   表示的紧凑符号。约化扩散矩阵由下式给出：

由于该矩阵是奇异的，我们遵循第 III B 节中概述的程序。扩散矩阵只有一

个非零特征值，因此我们需要单个动力学变量。为了简单起见，我们选择 

 作为动力学变量，  和   作为旁观者变量 。标量扩散系数为 

。环境随机熵产生通过方程 (11) 和 (17) 中的导数修正项找到，并可

表达为 ： （此处为长公式，见下文公式解读部分） 注意，当系统接近本

征态时，  的表达式容易因数值不准确而表现出奇异性。测量持续时
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间越长，这种情况越可能发生。产生奇异性的轨迹在计算平均环境熵产生

时未被考虑 。

C. 各种情况的结果

当双自旋-1/2 系统经历   测量时生成随机轨迹，图 6 描绘了 

 坐标空间中的示例轨迹。我们首先将系统初始化为   的三个三重态本征

态之一，即   或 

 本征态（在图 7 中表示为两个紫色和一个灰色叉号），或者是 

 的三个三重态本征态的任意叠加，使得系统保持在   的三重态

空间中 。

 和   本征态位于图 7 顶部和底部的绿松石色

叉号处。  和 

 本征态位于图的中心（图 7 中的灰色叉号），尽管它们是

正交的。图 6 中对“8”字形区域的回避可以使用测量坍缩级联模型 [51] 和 

 本征态对之间叠加（具有实振幅）的轨迹来理解。图 7 中的红色和蓝色

椭圆描述了...（接下页）

第二部分：核心解读（Linux等式风格）

Page 6 核心解读：

总自旋Z测量动力学＝三重态空间守恒约束＋三变量闭合SDE系统＋奇异扩散矩阵降

维熵算

详细要素说明：

公设 (Postulate)： 当测量算符（ ）与某个守恒量（ ）对易，且

初态为该守恒量的本征态（如三重态）时，整个量子轨迹将被严格限

制在该守恒量的子空间内。

思想 (Idea)：

守恒带来的降维：因为测量的是总自旋  ，它不会改变总自旋的

大小  。如果系统一开始是“自旋为1”的状态（三重态），它就永
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远不会变成“自旋为0”（单态）。

等效性：这使得复杂的双粒子系统（  维希尔伯特空间）

在动力学上等效于一个单粒子自旋-1系统（3维）。

逻辑推演 (Logic)：

1. 建立方程：写出   的随机微分方程（Eq. 26），发现当 

（三重态条件）时，漂移项和扩散项均为0，证明守

恒。

2. 变量选择：虽然有15个变量，但在这种守恒下，只有 

 三个变量通过噪声   相互耦合（Eq. 27），形成闭合子系统。

3. 熵计算：该子系统的扩散矩阵   （Eq. 28）是秩为1的（奇

异），因为只有一个噪声源驱动三个变量。必须再次使用“动力学

变量（ ）+ 旁观者变量（ ）”的方法来计算熵。

发现 (Discovery)： 即使在守恒量的限制下，测量过程依然产生熵，

且计算必须处理因变量强相关导致的数学奇异性。

本质 (Essence)： 对称性（  守恒）极大地简化了随机动力学的几

何结构，将高维扩散限制在低维流形上。

第三部分：公式汉化与逻辑解读

基于 Page 6 的 Eq. (26) 和 Eq. (28)。

(注：此图可展示三重态空间（Triplet space）在几何上如何表现为球面或

特定的子空间，区别于单态)

1. 总自旋平方的演化方程 (Eq. 26)

中文文本等式：

总自旋平方变化率 ＝ 测量强度×自旋Z分量和×(1 － 三重态相关性参数) × 随机

噪声

逻辑讲解（无数学符号版）：

守恒条件的数学表达：这个公式告诉我们  （总自旋大小）是不是常

数。

2 × 2 = 4

S2 s ​ +5

s ​ +10 s ​ =15 1

s ​, s ​, s ​3 12 15

dW ​z

D ​Sz

s ​3 s ​, s ​12 15

S2
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关键因子  ：这部分是判断系统是否处于“三重态”

的开关。

如果是三重态（Total Spin = 1），这三个参数之和刚好等于1，括

号内为0，导致  。这意味着测量   方向的自旋不会改

变总自旋的大小，只改变其朝向。

如果不是纯三重态（例如包含单态成分），这个因子不为0，测量

就会引入扰动，改变总自旋的大小。

物理意义：这证明了在特定初态下，我们可以把这个双粒子问题安全

地简化为单粒子（Spin-1）问题来处理。

2. 测量   的扩散矩阵 (Eq. 28)

中文文本等式：

Z方向测量扩散矩阵 ＝ 测量强度平方 × [[v², vk, vy], [vk, k², ky],

[vy, ky, y²]]

逻辑讲解（无数学符号版）：

结构特征：这是一个   的矩阵，描述了变量  （粒子2的Z自

旋）、 （粒子1的Z自旋）和  （关联项）之间的随机联动。

完全相关性：注意矩阵的每一项都是   的乘积（例如  ）。这在

代数上意味着这个矩阵可以写成一个列向量乘以它自己的转置 (

)。

秩为1（奇异性）：这种结构意味着所有变量的波动都是完全同步的

（由同一个噪声源   驱动）。你不能独立地改变其中一个变量而不

影响其他变量。这就是为什么我们不能直接求逆矩阵计算熵，而必须

选一个“代表”（动力学变量），把其他人当作“随从”（旁观者变量）。

 的含义：这些是各个变量对噪声的敏感度系数（见 Eq. 27）。

例如   越大，粒子2的Z自旋受噪音影响越剧烈。

总结： Page 6 确立了在守恒量存在下的测量动力学简化模型，并展示了如

何用奇异矩阵技术处理这种高度相关的随机系统。这是后续分析不同初态

熵产差异（Page 7-10）的数学基础。
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继续

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

这里是基于文件 Page 7 的详细翻译、深度解读及公式逻辑分析。

第一部分：Page 7 全文翻译

接上页（CHARACTERIZING QUANTUM MEASUREMENT）：

[接上文：图 7 中的红色和蓝色椭圆描述了] ……  和 

 本征态之间（红色），以及 

 和   本征态之间（蓝色）

的叠加。绿色直线代表   和   本征态之间的叠

加。黑色外圆代表通往   和   本征态的进一步

演化路径 。

空白区域是两步测量坍缩级联的结果。例如，从   本征态

开始，系统坍缩到   的三个本征态中的任何一个都有非零概率幅。这些概

率幅中有一个减少到零是坍缩过程的第一步，使得系统到达叠加轨迹

（superposition loci）之一，即红色或蓝色椭圆 。

系统无法恢复第三个本征态的非零概率幅，随之它沿着椭圆向两个本征态

之一移动以完成坍缩。空白区域无法从   本征态的起点到达，因为这将涉

及穿过叠加轨迹。关于这种图案形成的进一步讨论可以在 Walls 和 Ford

[51] 的工作中找到 。

注意图 6 中系统进行   测量时对区域的回避与图 2 中同时测量   和 

 时的图案形成之间的相似性 。
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图 6： 双自旋-1/2 粒子系统进行总   测量时的随机演化。这 50 条轨迹是

用自旋分量   和   描绘的。每条轨迹都始于   的三个三重态本征态

之一（在图 7 中表示为紫色和灰色叉号），并终止于图的顶部、底部和中心

的   三重态本征态附近。测量强度  ，测量持续时间为 6 个时间单

位，时间步长为 0.0001 。

我们现在考虑与双自旋-1/2 系统总   测量相关的环境随机熵产生。特别

是，我们比较当系统准备在不同初始状态并坍缩到   的各种本征态时的平

均渐近环境随机熵产生率 。

图 7： 曲线代表   不同本征态之间的叠加（具有实振幅）。上下椭圆分别

描述了   和   本征态之间

（红色），以及   和 

 本征态之间（蓝色）的叠加。垂直绿线代表 

 和   本征态之间的叠加 [51]。紫色叉号代表   的 

 和   本征态，绿松石色叉号代表   的   和 

 本征态。灰色叉号代表 

 和   本征态，注意它们是

正交的 。

图 8： 案例 A 的平均环境随机熵产生：双自旋-1/2 系统进行   测量，从 

 本征态开始并接近   本

征态。测量强度为  （蓝色）， （橙色），和  （绿色），

包含 600 条轨迹，时间步长 0.0001 。

案例 A. 我们首先考虑当系统从   本

征态开始时的平均环境随机熵产生。注意，从这个初始状态开始，坍缩到 

 的   本征态的概率为零，但坍缩

到   和   的概率相等。系统已经位于图 7 中垂

直绿线定义的叠加轨迹上，因此不需要经历测量坍缩级联的第一阶段。图
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8 展示了当接近   本征态时，针对不同测量强度的平均环境随机

熵产生。对于接近   本征态会产生类似的图。环境随机熵

产生的平均速率大致与测量强度   的平方成正比 。

从这个初始状态开始意味着整个过程中  ，结合  ，方程 (28)

中的环境随机熵产生简化为  。因此

我们预期对于测量强度  ，随机环境熵产生的渐近平均速率为 16，这

与图 8 中的橙色曲线一致。注意这是双自旋-1/2 系统上单粒子 z-自旋测量

（案例 1，如图 1 所示）的两倍 。

案例 B. 我们继续考虑这样一种情况，系统取初始状态 

，因此在   的   或 

 本征态坍缩的概率相等。这位于图

7 中红色椭圆上的   处，因此系统无需经过测量坍缩

级联的第一阶段即可进行。与坍缩到 

 和   本征态相关的平均环境随机熵产生在图 9 中描

绘，分别显示为橙色和蓝色线 。

第二部分：核心解读（Linux等式风格）

Page 7 核心解读：

测量空间拓扑结构＝叠加态椭圆/直线骨架＋两阶段级联禁区机制   熵产率状态依赖
性＝初始位置几何优势（Case A/B位于骨架上）＋简化动力学方程（s15锁定）

详细要素说明：

公设 (Postulate)： 量子测量驱动系统状态在希尔伯特空间中移动，

其路径受到“零概率幅”条件的严格几何约束。

思想 (Idea)：

禁区 (Empty Regions)： 图 6 显示了明显的“8”字形空白区。这

是因为系统不能随意穿越状态空间。它必须先“杀死”某一个结果的
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可能性（概率幅归零），这会把系统吸附到特定的几何曲线（叠加

态轨迹）上。

骨架 (Loci)： 红色和蓝色椭圆以及绿色直线构成了状态演化的“高

速公路”。一旦系统上了路（第一阶段坍缩完成），它就只能沿着

路走（第二阶段），直到终点。

逻辑推演 (Logic)：

Case A 的特殊性： 初始状态直接选在“绿色直线”上（  恒

定）。这意味着系统“生来”就少了一个维度的不确定性（不需要第

一阶段坍缩）。

熵的解析解验证： 由于  ，原本复杂的奇异矩阵计算（Eq.

28）竟然奇迹般地退化为一个简单的标量方程 (

)。这解释了为什么图 8 中的斜率精确等于 16（当 

 时）。

发现 (Discovery)：

如果初始状态恰好在“测量路径”上（如 Case A），熵产生率是恒定

且可预测的（与测量强度平方成正比）。

这种几何视角解释了为什么某些量子态演化得快，产生的熵多

（路径直接），而另一些则慢。

本质 (Essence)： 量子测量的热力学效率取决于初始状态与测量基的

几何关系（Geometry of Quantum States）。

第三部分：公式汉化与逻辑解读

基于 Page 7 的 Case A 简化熵公式 和 图 7 的几何方程。

(注：此图展示红色/蓝色椭圆和绿色直线如何在   平面上切割出

允许的轨迹区域)

1. Case A 环境熵产生简化公式

中文文本等式：

环境熵增率（Case A） ＝ 8 × 测量强度平方 × (系统位置平方 ＋ 1) × 时间

步长 ＋ 噪声项
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逻辑讲解（无数学符号版）：

来源：当系统处于三重态空间的一个特殊子空间（由绿色直线定义）

时，变量   被锁定为 1。将其代入 Page 6 的复杂矩阵公式中，所有

交叉项抵消，只剩下一个干净的表达式。

物理意义：

系数 8：相比 Case 1（单粒子测量）的系数 4，这里变成了 8。

这暗示总自旋测量的“烈度”更高，或者说环境为了区分   和 

 这种纠缠更强的状态，需要付出双倍的熵代价。

渐近行为：当测量接近完成时 ( )，括号内变成 

。总速率为  。这完美验证了图 8 的斜率。

测量强度的平方 ( )：这是一个关键发现。熵产率对测量强度是

非线性的。测量越强，不可逆性（熵增）以平方级暴涨。

2. 叠加态轨迹 (Superposition Loci) 的几何含义

中文文本等式：

允许演化路径 ＝ 概率幅为零的边界条件所定义的几何曲线

逻辑讲解（无数学符号版）：

为什么有椭圆和直线？

系统有三个可能的最终归宿（  的三个本征态）。

如果某一个归宿的概率幅变成 0，系统就只剩下两个选择。

绿色直线：中间那个本征态（概率幅为0）被排除了。系统只能在

“全上” ( ) 和“全下” ( ) 之间纠结。这在几何上表

现为一条直线。

红/蓝椭圆：分别是“全下”被排除（只剩上和中）或“全上”被排除

（只剩中和下）的情况。由于量子态归一化的要求，这种二选一

的纠结在   平面上投影出来就是椭圆。

测量级联 (Collapse Cascade)：

任何不在这些线上的点，代表“三个都有可能”。测量动力学会先把

它推到某条线上（排除一个），然后再沿着线推到端点（排除另一

s ​15
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个，只剩唯一）。

总结： Page 7 是理论与数值结果的交汇点，通过 Case A 的解析解验证了

奇异矩阵方法的正确性，并用直观的几何图像解释了复杂的随机轨迹行

为。


