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XEEXHEE 1 TIHE 2 TTRIRENE,

F13W
TFWIIIZRE ARC-AGI

BE TXESEE (LLM) B, FRNMSIAA, R ARC-AGI-1 EANKHZE
AN MDA E R B AMETNERNEE . ATREX—R, HilEH
T CompressARC, X2— & EEATIHIZLN 7.6 AESEER, ©EHIEMEE
/ML BiRg R KE (MDL) R#RT 20% RIT(HE@, MDLEFT
CompressARC TEREF @R BT RERIREZVEES . BIEAIPRAD,
CompressARC & B FiE—iY ARC-AGI REZEIF7%, HIFRNEETE— D
L. BENERT REABRAREENBRHEIEREERS, It, CompressARC HA
ETRSCIRAEEY ARC-AGI “YERE" B TR, TEXTEIRREZENRGT, BE
BT IR R, FAT, CompressARC ARRT —RIIZHKAE
BEIER ARC-AGI &, XZRPA MDL AIRERRR T EATMIISG 25, B—Fhr=EE
BERV AT TIRTR

51 ARC-AGI-1 EEMIXBIMKRIMIIEIERAAR, EEITHLRFMRLDERAN
PR IRIRFRENER L RERVAE ST (Chollet, 2019), AHAET LLM MHIEHRER TR TS
ANENSRZIMVFBEIRENBE ST, BRXERFMAKI T RKENTNGEIE,. EEAX
M, FM1BEI5IN CompressARC FKIRFMF R ARC-AGI EIERE L/ DEIRE, X2
—MREE&R/NMERKE (MDL) [RNAIKAETE (Rissanen, 1978),

CompressARC FRERF I ETEHIRA#H1T, HANER SRR ENRN
IR, PLTE ARC-AGI-1 iHGiRE_ X R T 20% BUAERE,

CompressARC RS HIEM RN X BETHERRN— M RBEE/RX" (code-
golfing) BlEl: FikEEBIMEEN ARC-AGI HIEE (HPEAIRBHMISIKERIE
%) WREBEEERF. RERFERTIRN, HIATUFR&ENREFRUSRS


https://gemini.google.com/share/b046bee107f4

B A TVAETRMEMNN, BIFSREMUNERE. — NI TFREUMNERTES
EERASIENERSFRAE (NLESR) BTFEd,; EXENRERSKK, B
RERMENBEREIRN. 5—FH, SVEMNREEFEESTETFLIRIRE
FF, X1EITE L2178 (Solomonoff, 1964; Hutter, 2005),

CompressARC i&id 1.E 42 453 # & Ik EEUTE LORE IR R E 48 FARE RE R, 3&R T

—HERERY T XEANE R ERIDERFPUENREERS, ARERFRE

RFMmECIZARERE R, BEIFAERREONENLISKE, ZRARFFH
REEFNAGEREUARIRA KRR, ERlZEESENNBARIMUER

KE, HERRIIFAVEIN. XMERRE T RIBAEERAKRL RS AR
1518, XEHFEE ARC-AGI BIMEREL RHHEHNAN: « TGk BT
MFERRBIREAR, FEZINFHNER,

2@l
(B 1 KFIRER)
HENFY: EFKEXEHEEIETEIHYN BARE R U MNENER RV,

B/ NERIERR: BRERERTIRN, HMRKSEEFEFERANZLES, H
BUER AL 5 — R EAIMIMNIEMBEIREH,

REMKFERINGE. R#HITIIL, BENEHRRE 7.6 5155, CompressARC
T2 HRRT 20% BTG IRAF 34.75% ROIlSR il — 1o X REISZHET, X
MR FEFREZIFERIREARRIEEMN, CompressARC 7EItiZ & THYGERS)
RIMKA, FESELHESINR ARC-AGI ZIMNIEMEIEZIRIFIE (FIaNZ5¥ LI,
FEHRIKIT) , AReEBTFRIEXLERN AR ERNEE.

EXHEKIDNAT ARC-AGI EAENE (582 7)), FMRAT n@iESR (58 3
), #RT CompressARC MIZEHy (54 T3), BRTSRUER (557, HUU
THEEHBEXIERER (56 1)

2 H8&: ARC-AGI E /MR ARC-AGI-1 2— MATEEREENR, EENRXARS
MAR D RGP FRENET R BERYAE ST (Chollet, 2019), EENREPHNES N RALE S —
M REBIPSREFAN, RFALTREZ AN LB FRNE BN UE R AL BinE
B, FREMNCGEHT ENYEE. BfRSaY. BFESITHR. EXLEMETT
FE, RETILEN-EEMEEATG, UEBRSAIH IR RIRREAIN,
LESM R EEAEMER. B 1 BR T =1 ARC-AGI-1 JJIIZREEAFIFo

1: =4 ARC-AGI-1 ¥R,



o (a) RN : R MIEREZD—NMEERE, YENRENAMBERRIN,
o (b) RREMN: WAEAMFHIGHEBIRENICEREE,
o (o) FREIMIN: EMRFLLUSILARE, BEIFERKEE,

RABTFEREEMAIEEIEEEN LLM BERR A RELE AN FF A E
87.5% (Chollet, 2024), HIX7E ARC-AGI $3E EilZRAIHEZENEZE 2 40.3%
(Wang et al., 2025), 1B CompressARC R#iEa/MUBIN AR TIRIE, =T
Mg _E#1Ti)l14R.

iR L 8&XTF ARC-AGI-1 2 ENXNEZIFAEE. MR APEEET -0 R
MRXITIERZE, AR ARC-AGI NEMGZE, BEE, AGEER ARC-AGI-
1 {&# 79 ARC-AGl,

BHRERBSVEENFETROMIT (B3 TTHE 47 152

XEZEXEE 3 TIHHE 4 TIRIRERE,

%£3M
3 5k

CompressARC I EIff/RIGHIBEREM R I ERRNIEFNIRA, LUEEFRFERE
RAfTHEMNRENRERENE, EXMHERT, ABATMEREEEEM, RFEK
EfaiaN, FHENRITENHE ARC-AGI I EIEE R EHIBF IR, BEBR
T, BIT2BREERRRILHRENEFERAIITHN, RARITREREFREERS
SHXEKNER, LRI — M REERTSEKIIEKRNIZRF. CompressARC &
S BESRHTE—MELEERMRIEFNEFFZTEN, FEEFEREMITT. K
TN SEEREE (BERSETIFEMER) WT:

- BiT@I— M EREr (BE 1) “REXEFZE, ZEREBIFZHATIEN
ERIEE (F) NTEAE, XEEREHMFEeiER, £EELUETT,
BRFIEITERITENL H R FRTIRE,

cBRIEXT—MEBREE (§X2), eEFZRBRAXETALNMTF, 7
Ve — IR F LUERE 1 RAJaeRE, YRFHEHEHNRBLIZLS ERR



2, BRNESIRARAR, FENARD KEREMFIRKESHE, FEILXE
St FNEKERRNEMEFRKE,

« BE 2 hREBINAEN FRLEBELNEN, HREHOSRE KRB IRESS
RN NTHRRBRE, BRIMNIAFRZa—HD, HABETHEIRE (BE3) Kk
THERENT N T E, HNHSMHHFRENARUOMERMNTES B4iE28 (VAE)
R REIZ N EAR RS (Kingma & Welling, 2022),

RERHBIER: 8 MBBRARRA [0 example, width, height, 2] HY3K
¥, 88 2 xn_example TSP ENMERNABIETE. XE,

n example FRIHFEPEMN/AGEMEITEIEE, SIEIBDAREE LR R

IS, ATFIHNERREFREEDN, LREBIESIIEES 4 TNE. R
EHTREEREXUHN— N RENNTZA IS RES —MEF, BEMEHE
WIBTE— 1 ERNFRFEPHGEITEIER, TLUBI IS AT FTENEIEHH

SrTEE (B, S for BIFE) RS, BITEETEIFANBRIS
O RE SR B

3.1 REIEFZIE

BB ER— 1 E"RIRER (B 1) “EARNREFEFTERARES

CompressARC, ZIEIRIBT B ZFERIDERHIIEEMNE (ERNLE) Kk

o RREFRMIIERS MRE, FHEMNMEERITUTIEE:

1. EMIREESSHPREYRE—THIRA [n example, n colors, width,
height, 2] K&z (F417). (XBERE—IXREMTF, HKEREMT
VAE B9 KL 5K, )

2. [FHAMENE equivariant NN BIBXNIKE, HWHE— AR
7 [n example, n colors, width, height, 2] BYlogits 5KZE (5 617).

3. BIM logits IKEFR SRR D HPREEE, KRE—DMHIRA [n example,
width, height, 2] B (5 817)., IFNFEXLEGESLHAERIREIEIT
fice. (XBEBBRE—IEEMTF, EKEBRMUTF VAE NEMIHRKIL,)

MEMLE equivariant NN B— M3 ARC-AGI @B R TIRA G ST 4 Ay
20, XRHEIMNEENNIRFHEERER, HENRN 2z MR EE
BREY, IR DR BRI A TUE R,

F4:



[B 2: CompressARC AT —MISEMERT L, ZHEIE ARC-AGI #HEEIE
ERIRNEEBBEHITINE (ERMEMR) NRIEER.]

BX 1. ERIRTFRATTERE Py, NERFER. 46XE (FE: A<
®T) BREHE 2 ERNERDBESIR,
B 1 KBxR:
o FE11T: EX— equivariant NN Z2#3;
o P 31T: iI8E seed zz =<seed z| > (CREEZX 2, M 1 R T)
« %417 z < sampley,, .(N(0,1)) (ERHBN 2)
e 517 REO0=<0,>; CRERZE2, #& 1 KIEERIINE)
o % 617: grid_logits < equivariant. NN NNy(z); (RiEEE)

o BB 717 IRE seed_error =< seed_error; >; (REEZX 2, B 1 NEHRE
fh+)

o B81T: Priyea < sampley,,; ., (grid_logits); (£
o BT TED Prijjea
o P17 18E seed z=<seed z, >; (.ABMFFERTAES)

RIRZF AT A T IRBUENR NMoFEN R F (5 31TME 717). BTN
7 1INEREMF (% 3 TEETEEMFZEEER), BTURIEFTENHAVIRR
SHIEERNERIFIELE, 57X MMRIE, BlTa BUBERIRFAREKEINT

¥, AMEKERES TXR MM FErRLSEUSRmEL. Eit, ATERERE
P, HNIAFEEFRERMFRAIEERE,

BFNZ M UHTARUSP&RMMFRKE, BMBESENETHERS
B B3 5 M7 THMFNNE (FXXH 3.2 1), MUKE 11THI%RME (56 4

o

3.2 #HFl

8% 2 R T —MIRUEREE 1 PR FANENGZE, WRLEMFRKE. €
BASEIRMMERSE 3 1709FF, MRAMK—INFRNFIZNESD HHRE

(3% 817), ARZHBIE_MFURIELE RS ML (58 1117). ARB, €
M IESDHSHMELMENERTHE TE, USRS FRE (5 13-14

7)o



“WBRP— DD INREMT UEBM B — DR R EF AR AR MM
28, TEEMEMT, XLUBIELRIE (Forsythe, 1972) F)##t3L, ©fEA
—MREKEAM N2 ZEIRAMBB R F, ER— 1 REFEFSHN
B, XS LB BRI (REC) (Harsha et al., 2010; Havasi et al., 2018;
Flamich et al., 2021) BHHFYT EBEIE—HRIEY, HPHEEMTFKEREEIRT2
mzZEm KL 8E, ANMEREEAMSEIIFENRES . BITERESE XL
SR BURBFAE B

BANEEL 2 5 8 17HIE 11 17{EMA REC #TH AR EERME, BT REC
FRE BB Bl S AR D R AREFE D 2 BIRVERE RIS EX & (Flamich et al., 2021).

Fit, ATHEEER, FHBLTXLESE, BMEAETINTEE TFER, MM
47 CompressARC (&% 3), Bk, WF.. (ETHR)

2 #BH: CompressARC AT —MSENES R L, ZBEER ARC-AGI 14
BIBEFIR AT ENREREF (ERMEMRE) . RIBR-RBHITIEN, XLEFTENEH
BB R E A R PRARRY RIFFN, BRARIE:

1. K% ARC-AGI fi + £47E ARC-AGI i -> A5} ARC-AGI BiELE.,

2. #47 ARC-AGI i## -> i\ Z Naive Code-Golfer (B% 2),

3. CompressARC (8% 3) -> £k fi#, Fi&:1K Naive Code-Golfer (8% 2),
4. Naive Code-Golfer (8% 2) -> 7 5888/ (Bi% 1) 485,

5. JaER (B% 1) -> JED ARC-AGI ¥UREE, lup

BRERUE N EENFE T RATTEAS?
XEEXEE 5 DI 6 TIRYHRENX,

E5]

(ZE30) 1£5%6 817, MEERMRHOHEHFFRE 2z, BiA2 % 13 1THMFRER
BROANHIAERKE, RIE REC LR, ZKEIFERERGDHSRIFDIHZER
KLEE o XT5% 1117, ERRMPIPBKERZRF, B 13 T FRKESR
WA REFBRMEB LA (BI3IXE) KEYLEM -

B|/% 3: CompressARC, ©58% 2 R, EBfEATEMNMHTFIRMN, HEIH
b LUK [B]fi HH R i o A

B% 3 ek
e E117: WIN: ARC-AGI #iEE;



e B217T: X equivariant NN ZE#;

o B31T: WFEIBETRNE MBI P

o 41T FENAIMAK NNy FINE 0

e HE51T: WMEHT P BULE n example, n colors, width, height ;

o F61T: YIIBKIMNDT: FARA [n example, n colors, width, height,
2] B u MAXTERERE X,

o 717 MITTEREIF:

e $817: z «— sample(N(u,X));

o %917 grid_logits «— equivariant_ NN N Ny(z);

e %1097 L — KL(N(u,X) | | N(0,1)) + cross-entropy(grid logits, P)

)

o BNMIT: 12,0 «— Adam(V L, V5L, VyL);
o £1217: LRIEREIF
o 1317 Prijjeq < sample(grid_logits);
o F141T. B Prijjeq NINEIBHRRIB I
o 1517 LRIFABIF
o %1617 REEMARAIIHE
% 3 (CompressARC) ITEREWS BT I RIRE A 1 BUELCH R B EhESE ARC-

AGI #iES, HiEEMmtE, W—RTSHEAGRERE L 1 RERNHELN
R, BAPEFeh#iTIRT -

F6m

RATFEMEXERZX 1 ALK, MFASNREAEELI, FRSERME
I R] LABS Bh T I AN SR KE R4 RERIRE A 1 FIEKE, MMATERE
M T, XZBIHRNKDGITHIEMERMNEELT -

4 32

IRITHEMEZRMAZ O BRZLIE SRR ARC-AGI R A REME, M
B FIKE, HAMBERIREE 1 WKE, RIBRIRGN, XEFRERITE



BHZMEEERFNFINMRE (inductive biases) , BEIFREZAEFRKSIEN
ARC-AGI &, B ERNTR A EFRR TIGRE NIt ERVANRENZE S
4, REIEEEEMIER -

BZA ARC-AGI i@t NG R BRr. B, FaENERAE THEERF
RUHIL AT REME, FMNBERNHMBEIRINE R TAENDERSORER, A,
HAVERMNBRGRHOER. AEER. RENBRASSEEM ; MMRIENE
MERNRASTH RS ERASFERENREL. TS R8N ERIENTR
%, FAEREZE 3 BRUMAIEN z B9MF, DUREYE L IEERE—S .

& 3: CompressARC HEMBEHIROER, BITEZIKE (multitensor) BiE
k.

THEE (Be) BdEEEE LFIFNKRE (ke) MNEEXTFEIRME A,
Eit, WEEHEMIPEBEEERSINERBEEFTME. B cumax (BREKX
B) XFN—EESWIFFELEIANIRE, MFRSERAEEN GFIHR
H)o BFRERII—. softmax. F# (shift) MAMEER,

BRI — N IHEESR AT RN FERERVERSE (GFIUFIR D.1). — M HBEREEXTH
DU ROBEAEE FRZMEIRE (TUMIR D.8) Hplk. EDER, BEHE LAY
R MTAEPIREEIREIZ T NGt avR(EH, XEREBIS— M &ERKaL
BhEE, P—UREIHRESET, ARBEMROBEREE 4 k. XIFER
Transformer 2819 , RNEIZAAETENLITRURERE M FTIRVERSIMIRL S
#BR1E, MR ISR AR LT #F:

o AHN—NIKERMHA/BRKRER &EEE (=R D.2).
o JAKEN—IEHZ M MHETT softmax (MR D.3)o
o BREN—N/IAEENRENREAE (LR DA4),
o BKEN—NIAEETEZ—NMEE (LR DA4),

BHRERBSEFEENFIETRNE 7 TTHSE 8 TIM5?



XEEXE 7 TIHE 8 TIRIREZ,

BTW
o BZTHRIFLIERE (WHIR D.6),
o HBEHERNT— (WHRD.7),

o LUKHMIR D.5 PRI S —MiR(F, XERERSLESH, HITHHEEKER
B/ ENERS . FIAXERERFEMETEELERE LIETT . HMEETHE
AR ER 16 MEE, EHEMEBDER 8 MEE, UERItERAE . BFX
Li® GIETRENENALS, BMERNET7.6 5 (T6K) M8,

AEME AT I ERLFEHIER A AREAARSA [n_example, n _colors, width,
height, channel] BIEAPIKE, ME—AZKE (multitensor), SN KEEHR
XLEHEEFIARREFE (BI90 [n colors, width, channel] KE) . MLKEVEAN
z. R logits UNRFIERNAIEEERASKENER . BE, WFXLHEE
NE— M FEBE— M KERTFEEZFRNER, XEBTHEERANANRE
o a0, MIIEFIEIERED BRI UEAIRAREFERARA [color, width,
channel] HIKEH ., XTFZKENEZATUMRC,

5458

#1179 CompressARC TE&E MR LIRET 2000 MEENIGSE, S MREFE
B9 20 PP . TEUEIBHETIEN, CompressARC IEHERT 20% HITE(LEE K
BN 34.75% BIGRERT . B 4 BR 7 HaEREEIER BB MM A RIS . MY
KPR 4 115K 5 1B R 7T HERBEREMNIT .

= 1. ¥ ARC-AGI-1 5FERRBERERL (FREANIIGEIEEHRF). S
FERE MRS TRRRNEN, IEUMBERINGRE eI ERE, 258
ARSI IER -



VaRz kT W EmE BRSNS

FEMAE x X 0% 2
HN R 1€ (Kamradt, 2024) yw X 40% ThBITEE
U-Net B EIER B AR V4 0.75%  NFHMhE
CompressARC (&%) v

B iRk 20% DFFRMESE
HRM JHRESEIE Mt e V4 31% NFITESE
HRM (Wang et al., 2025) WIER+TMH 4R v 40.3%  DFIFEE

OpenAl 03 high (Chollet, 2024) B BXRIAAE £ v 87.5%  FBEIFHE

5.1 AT LR R T EERRRTPLL¥? CompressARC X7 EAEN R EIREZ
R, BREEIHEENRI . 130, NEEFRHRHE 28e73c20 ERFFIR

MIBZEFEEAE (BB 12a) » BEFIENMLEE, CompressARC & FHENS

HITHEEERRTVIERR, B EHTRKERLEMR . Hitt, ©EREFEE, ERERT
—INEREEES, SAEFRBENAOMEERER (B 12b)

E8Ml

B 4. CompressARC iR A EHFEEHENFEINHFH TN LA BRTH
FEBFNEMNRE R IENRE (pass@n) o« EAEENNKIA 2 RAFRBNIE
kG, XWBRHNNETEHELRS 20% HEREE . (a) 400 M)IZRER; (b) 400
MEHE IR .



5.2 REIATR: RAREG TRt (B 5) J, HIRIESRFIERIMNEAE R
HEGE, FITTRXMNMREAAFREER (Color the Boxes) o

5. AARER, ¥ 272f95fa,
5.2.1 R BRI

ASERBR:. BIMNEERIRIBARIDNGIR, BHFPGTRAEE, BIRE
WERT o ARBNZiHPLERENVMLESIR . Bk, RITERIHES
TBEREB, AL, RITERIPESEFIE . ZiE, BRITERIMATRAVENEEN
AFENNGR: L. i, AR E&E. I, RITERAERRIERNS,
AR RESRENFLE, BERIESANERAGRER

CompressARC fRAZE:. +r 2 BT CompressARC FERT B IFESIITH

o TEEITEMRE, BIILUFBEEIIN z 5%, RIMeHBT — M-S r st
MRMITHNDEIE (B7) . EIZHEEE, EMIRETEERR. ERFERK
BIF9KE, BEREKEED, SHE 6a Finil z B9 KL BUETEX LT Z M _E Bk

a1y
S o

HATNER z th1ZEMRT, LT R CompressARC SAIE SR RILIHT . BTz
B—1NZKE, TEANENKELNM z WE KL FERMTH, BENRE K
M5 (WE 6b), EITAIUME z PHMLKERE T BFRIBTNER

o TEIIZRERIE], BT MNKEIS, FIEKENEEARTEBEES . FiZREHMN—LE
BEE1TH, HNEBIIXANMEKEZ —WEBEESE, BE 25 CompressARC
MEEMEERER . XERINETHE—REEBIET, HH [color,
direction, channel] HKEJLFIFZETE 200 TRWEMIGIE, XGFEEREER
Fia B RIEEE A ERIEHE o

BHRERBSEFEENFIET RIS 9 TTHISE 10 1M3?

XEBRNIEE 9 TIAE 10 TIAHCERE:




BEOm
3 2. CompressARC E3“hARERA B EITRE,

%3] CompressARC T+ A4? KEERIARR
T =T

50 CompressARC BIMEHIH—MEZEMNE (FEAR) , ERANRIE 7 (sample)
BREETAINMS, EthditEe, ©FERRAPRE | BAFIIE
Hha - S #HER T XMHNXR . ERFEEMRE TG (sample
RUAHECEE,; WMEmENIERBTY EARTHE) B average)
MR EBERED I T KEIHEENTIIEE .

150 ML — 0%, HPRSGRERRMNMNEE . EFEE B | BT
BEIXEFRBHEPEHRER, #RNXRFERTER . ¥E

200 M HMEETHR LR BORBANKREE . ©EEE B | A
THEAMEEPERORRYDESRIOE, HFELUNATRE  BHE
BRE . ERERE T HitiaElabFRIERRAZEIR, W
BT TR o

350 M LI R TRIBS RO S RS ELS IRV IEHRE & B | BT
o ERIREIEEMAERLTERT R—EAE-SRIRGRE  E
FaRge, RteRpTXIMRE , EETREeAENF
SR, NROBREBRIRZ, AIEERRERNRIEANNE
fAhm . REML, FHMEmbEREERE —HKRERF
1, XEREMLEIEEIIE -

1500 WKXELZAR T RBEFIRS . EREERENERPHEIE B | A
i#, EXHAEREIBITIEE . ¥fE

Z10:

B 6. JZRAAIEHREM SIS E S FFE] CompressARC {REFEME LU AN{AI7F 1%
PSR SET



o (a) JIZREAIE) KL DA EM TR R FPRVAERLLE] (FEEUINAAZ D) o KL BiE
STHXR, MEMBEE/LFE7EM.

o (b) BFIZRERIEIRY KL AR D RN ZKE z PEMRUARKERTIB. E91 3K
EHETEMA, RPAENESEE, MEM 14 MKERES, RAENIRZ
ERRA.

7 B EISRRIEIRIRKR S, 8 CompressARC TEiERE(S B R ETF.

e (a) [example, height, channel] 1 [example, width, channel] &, X F&
MNREIFITTS, EBBE—NEEN n channels IRAE . MWXAREFHITERSD
i (PCA), TMEEMS (FERNKEPELLEMAL R 1000 FLA L) B97]
M AR FIRENPLREAT I RE/F"E S RRFENE S —IRFIA,
NFENTG, TMEREFPESINRMEEL L T IRENE R REGITRI
B, KEEEPEENAEMERER T,

o (b) [direction, color, channel] K&, XM PCA of#: BIRER 715K
ENTNEERD. OMRENEFIRFIE: BaXn L, FBRNE, dEX
N, BEMNNE, ZKESFENARENRBSNGRPERHBHERE,
TR E RS EER T E R 5358 829 3o

6 Wit WAREFINEFRELIENEIBKRR, EFZMREN A TFHRER DS
BETT RN T ER. XMEREHRIERRN ARC-AGI E&ENH IR
B, BanzEENEBRESER,. 7 RANRYVEBEESE L% LLM £] .

EXMEET, HIMEET CompressARC, ERXAEREMIILGEE, EEK
FTEMMIGERE. BiEASTRX KXW B @A L E RS, BiEdEE
BB EE X B AR AR Bl MDL, CompressARC R T ARC-AGI-1 514 ATRIFH—
KEPEB,

BHRERRSNEEIFETRHOSE 11 TTHSE 12 TTE?

XERIAEE 11 TIME 12 TIRYPERF:

TR



CompressARC RUVIEIEBhl R T RV BRI BN REFUHRIAKE . RABRTARE
HREFERTEEAMSEHEM MDL B2FRREEHIR, B CompressARC BIHET
BERRT —1MERR. ETHENENEERTE . KRE CompressARC RIZRIET
TEREIRK, BeNERNERBNELNMERITZHIZARD, FHE
ARC-AGI BZITIHENT — N EFRVESR o

R’REE(AZE CompressARC KKRARH—PEESM o CompressARC ERT
WZEEXIEE, AT EIFAZEFS CUDA RIZBIRSIIIGEREREE . £F
HAIRMEITH B MR NGREREME L, XL BRI ERIME-
SERENEM .

AT BE b TUR T AIAEFO) A LR I Rt B T Hksk, HER TI5FHIA

MDL FIE4EREBrI LI £ S NRIFHEEST o FHATLL CompressARC AMEZIEIE,

IERRT MAREFEIMERA LS MDL ftE, MmelEd —M@dEBsRA TS E
(AGI) BYETHERVE 4. #FEMERRE o

H121: BEXH
SE 38
o Akyiirek F A (2024). MiABTIZR (Test-time training) TE/MEARZESIHEIIREA
MR
e ARC Prize HIBA (2025). HRM 7£ ARC-AGI ERIBIFERIRTN /1o
« Barbadillo (2024). ARC24 R A EHE,
o Barbadillo (2025). & ARC25 HkEFEHIEREFSINLES,
o Berman (2024). F A7 ARC-AGI EIX1EEILE R 53.6% 35K
o Bonnet #1 Macfarlane (2024). ##ZRBIEFZIEl,
« Bretagnolle #1 Huber (1978). ZZE{4it: R/IMEARL,
e Chauhan F A (2024). REZFEIFHEML (Hypernetworks) BIEE I,
« Chollet (2019). I BEMIE B,

o Chollet (2024). OpenAl 03 £ ARC-AGI AFF#EE _FRIRIES 7.



o Cohen #1 Welling (2016). B#EFTEFMLE (Group equivariant convolutional

networks) o
o Cole ] Osman (2025). FERFER: ARC REZEINAE5EEA,

e FanZ A (2021). #\##F2 (Tropical convolution) B IES BT LZAI—
FhHSCER,

 Flamich F A (2021). @I EXEHT (REC) M ERTHITRIGKEILE R,
o Forsythe (1972). /B &K EMIET DB REM DT RIFRILLIR TS %o

o Graves FA (2014). #ZZEXH (Neural Turing Machines) o

EETERMETIFIET RS 13 WHE 14 71?

XER]HE%E 13 T 14 TIBYHCENE:

13|
o Greenblatt (2024). f§£F8 GPT-40 £ ARC-AGI t£iAZE] 50% (SOTA).

F

e Harsha Z A (2010). HXEMEEERE,

]

« Havasi FA (2018). &/NENAUIRFS) . MEGERESERIREXEAF L,

o HeZEA (2015). BFEBGIRFIBAREZRESS (ResNet),

e Hendrycks #1 Gimpel (2023). iR E LM 8T (GELUs),

e Higgins & A (2017). beta-VAE: FRAZRESERESIERMIEEER

e Hodel (2024). BFRMHEIFIERIE (ARC) HITUIIFEIES (DSL),



o HuZEA (2021). LoRA: KiESEEMIEHL HIEN,

« Hutter (2005). :BRE AT EEIE AIXI,

o Hutter (2006). #if4F%€ (Hutter Prize) : AZRENIRMTIRESE,

o Kamradt (2024). ARC Prize 2024 iR 5% E 4 &, 185 40,

« Kingma 1 Welling (2022). 5 B4%si%28 (Auto-encoding variational
bayes)

e Knoop (2024). ARC Prize 2024 $32& 5HARIRE X o

« Kolmogorov (1998). iCHE# kK.

o Langdon (1984). BRI T

o LeGris A (2024). H-ARC: X ARC E&MEA A ARRMAFREEIT

o LiFA (2024a). ERVIAMAE FHITHRHEE,

$£14H
o Li %A (2024b). ZEAMMESHITHRIEIR (arXiv lRA),

e Odouard (2024). ARC R X1,

o Rissanen (1978). @I &RIAZEIEEAREIR (MDL),



¢ Ronneberger F A (2015). U-Net: BFAEYIEFEGDEIREFIMLE,

e Shannon (1956). B EENZIRER =,

e Shannon (1948). BEHIEFIEIL,

« Solomonoff (1964). |ANEIRRIANIEIE (F—EB7)

o SunZFA (2020). &I BEEHITMIRNE)IZR (Test-time training) , LASEITE
PHmEETEZW.

e Sgnderby Z A (2016). i1EZ 9D B4RIDEE,

« Tsybakov (2008). IEEBEHITFIE,

« Vahdat # Kautz (2021). NVAE: RENEZH B4RIEEE,

o vanden Oord F A (2018). HEEBFRT~ES (VQ-VAE),

o Vaswani F A (2023). FRINFIMZIREZERNELE (Attention is all you

need) .

o Wang F A (2025). 7 EHIEER! (Hierarchical reasoning model) .

e Xiong Z A (2020). 3£ Transformer Z2¥gH Y231k,

o Zaheer F A (2018). ‘REES (Deep Sets),

TERUSBFF T RNMRES (58 15 TTHIE 16 T) 15?



XEBEXHYE 15 TIME 16 TIAPERFR:

FT15 7
MR A HHXTE

A1 EESEENENME SRRV RBRBHFFR (Hutter Prize) . 2RI
ERFALRERER BRI XA X HFERBIIRBIA, LUICEEHR AR RS ER
% . HelRBIANNESAEEENENZFRTEE . XMENXRAEEEANTAE . H
g, EIHETNE BN E e R AR, BTSSR | IEXR)INE
(Solomonoff Induction) , XE—MIEit EREERAIITENE., ERAFARETUN
15 . XMMNBEEERTREEREEL, HEHARBKERASIENAI/RESS
KEZE (Kolmogorov Complexity) o ZEZER] B FEEHIENR/INKERR,
MM SRR S R/IERKE (MDL) BXREEFR . EERINHVIES, &M
FRfEME T INXMEREEERE -

A2 ERIESHREEE A TRINERNREREERSR, EERATERIEHYwG
BICHIEZ R o BRI RERMNEBREREEMNHERD (REC) BFEME
REC NEFEEMRERE KL HERARN, EEFENHREETRN, REEX
SEMBYATI AT AR o EItb, XTFRIDIEIC LIS E SR MESET 2 HENIER
s (RRAEER) RUREA LIRS, EABINTRIUEENSHOHRITE#H
HINEBKE . 0ER, FMNIAFEXNASHDEHITEBHESICHESAIAI TR
15, TRIREFNRILIEL . EABAELEERSH TERY, BEHENSE
BITEES 8], EIHAIEE REC . FAIHREBEINMESEAERS (AWGN)
FEAZz 58, Bt AWGN EEREAN (BaASHIESE) ERMEEE
RITHRRE T RBIER o

A3 EoBEmESRE THoBHRESE (VAE) HRESRETYHNNRERRZE . B
BAEATLUERREEEARNIVEZEIRY, BEAFATETHETENM
b, EUEFAREER VAE . VAE NIFZARSINEX . HNEZHAERZ T



FRIDEME DB VAE fRi3es , BRIFE—BMUKFRER KL 3#t, FEEERN
o ALLBHNNZEREFIERER— Aﬁ@ﬁ%)% o beta-VAE S| \T EMRELHININ,
HogF KL ik, XERNHRGIPHUERRIF . NVAE WA T IFIEERIRKA G
& , CompressARC HfEA T —F#IRBVITRIIRAES

A.4 Hfth ARC-AGI 757 SR &SN L ARE R T RIREMBE RN, AR
BNEIFUNLR LLM RLSHER . TERASEERMDRNE SiEd st
HYRE P SRR IEMING o

16 T
XL KB E AU TRIGHRIZES MR

o TR TIGRREEGE_ EHITHAE o

o BRI EMBIERENERTGE

o AR EEREUELRNA .

o HEEREFIGR: ENEHEHESNNEREN RS EERE .

o CMERBHNILR (TTT): FIBTTT HAR,

o ERFS. FiFZMEEUEHEFE IS RARASHITER o

LLM #IE: TR LLM BIEEIERES

XL EFD SR 87.5%, B MR IRITERAET 200 £t . I 1EMER
TEEBNBEWN EFIZIESIRE, M CompressARC 1M BNt it R E 4k



HiE . ENNHERETRBEESR NN DGR MERE LR EREMTT X -
tESMER

o BER: EFIIRTNIEEEIES (DSL) F#HITAMEREFER

HA

o BEFTEER. 5INET VAE WA ERREFETE, XE25HITHMBM
I

A5 REEIZEM WAIMKIRIT TN, BHESETHEZEN . &Sl LR UTF
Transformer, B1&TREMMEML o

o EBHIE: EELM b/ TRERHTEENEE)I—1 (Pre/Post-norm), 7IF
Z2BEERER -

o BCEERE: FERZEMT Transformer B SiLU JEEME o

o FTM: REMIATHENEEEL, KAFLERN , FLETIRENE ARC-AGI
Y SRS T o

fitR B i@ KL AIZEHTHFKEME £ 3.1 T, HAEEE 25 121789
len(seed z) 8RN KL(N(u,X) | | N(0,1)), 33 len(seed error) hEAR
X )& o Flamich A (2021) JEBH, MIREFEEZMEIE P, MHFBERBEEDH O
HASBHNAR, MBS MERERNOKLP | | Q) tH,

BHRERBSINEENFZTHRHSE 17 TTHSE 18 1132

XEZEXEE 17 TIHE 18 TIRYHCENE:

EI7TH



BEFLUZE Flamich FA (2021) XFRERIE. BITHEMAF D LU AR
EFARS. UTEHRMNECSHERENHEESH. Bmsz, HEEE2F
HRIBIEF B IRMURIF z ~ N(0,1) B9MF, LURIN z ~ N(u, X) B9%KF, FlH
EEIFRAR] LUERERE KL(N (1, 2) | | N(0,1)) BOFRERF F L8R B DR X
FiFo

ATEFRE, RIREX 2 LI 7 —MRMPTHELRAE (Forsythe, 1972) BIHH,
BEMEAFTFFHLUEZE min(l, cw(z)) B2HEE, Hip e < 1 B w(z) 28ELL:

HIATERERE/ N ¢ B, REFEDHFUTHAREEERIZEI N Z). it c
T, BAIFREIERFHEL RS~ ENTMFRKERI KLHE, REkLHE—
TIEZER Pyecep BT

Poaccepr = | N(z;0,)min(1, cw(z))dz = [ min(N(z;0,1),cN(z; u, X))dz

FA1IEEE Tsybakov (2008) X} Bretagnolle-Huber 21, (Bretagnolle & Huber,
1978) BB FT R KL BVARIR:

(1 + C)P accept = (1 +c—P accepZ)P accept

= ([ max(N(z;0,1),cN(z; 1, 2))dz) (| min(N(z;0,1), cN(z; 1, £))dz)

I A K= EAFRAY Cauchy-Schwarz A& :

2
> (f max(N(z;0,1),cN(z; 1, X)) min(N(z; 0,1),cN(z; u, X)) dz)



2
(I eN@E0,DN@z 1Y) dz)

N(z;0
N(z;u

=cexp (2 In] N(z;0,1)N(z;u,X) dz)=cexp(QInE.~y¢.uy) [

>
FEfEN A Jensen &R :

N(z;0,1)

m]) = cexp(—KL(N(u,Z) | | N(0,1)))

>c cXp (EZNN(Z;/I,E) [ll’l

XS T EDALUTRER R

Pucee > Tz XKLV Z) | 1 N(O.1))

18 .
Ft, RIEEAREER, RBIVNEEAKE (BT TF) B2 2i%ESHERNE

.

+c
exp(KL(N(u,2) | | N(0,1)))

seed z <

PRUTTEAN A FRERZLIANRIE:

len(seed z) < KL(N(u,2) | | N(0,1))+1log(l+c)—logc

XS5 HAIFRREIMFKE KL T MEMRIEE,



XF seed error I, X 2 BRYUFhFLUIMEL logits BRSNS RRIERE P

o XIPREFRETFEKE grid logits ~ Categorical distribution(logits) FHig
fhFiREL grid logits 58 Delta_distribution(P). AR, AIUBXERER
HNETF KL R FIKERRR, T seed error KERZH:

KL(Delta distribution(P) | | Categorical distribution(logits)) + log(1 +
c)—logc fakA:

= cross_entropy(logits, P) +log(1 +c)—logc

fiR C ZE (MULTITENSORS) ZFIH(ZERRLIFEE (2. FREHCEEMN
) KA SKE BRI WE 8 Fin, ERE—TEEZMIIR
KENH. BAVERNFIESFEEEATLUAENNARE S KEF MR,

n batch, n tokens, n channels] B9 3 #iK= 51T, M CNN ERK

n batch, n channels, height, width] BY 4 %KE 1T, FNINZIK
SER—HMIFEBENTHKIKE, HEERIWKA [n exanple, n colors,

n directions, height, width, n channels] BY6 #BKEMNFE,

REHWELHNSEFIRWERE—LENVEERKE LRE. LM EER
[
[

7
s

EETERMETIFIET RIS 19 TTFE 20 ;7?

XEBR]IEE 19 TS 20 DI SCERE:

FT19 1.

B FREBELEE, AENZKEPTRSEH 32 NKE . HRITEHFT LK
M (KR E1) KBEKELRES GE, XESKEPHKEHEHLE 18

PO
"o

* 3. ZREBLENRTAE



LS EEipY

=5l (Example) ARC-AGI BRI AIHE, BEBHERIE—1

Eits (Color) ARG ENSE, FEERe (WHRF2)

751d (Direction) 8 NAME, EFRERTNEE (WMRF1) o

B (Height) IR ARE (MR F1) o
FEEE (Width) ETM R R IAE (WMRF1)

iBjE (Channel) EREEET, MRESHRALEENRT N8, BRI 16,

NTIRBZKEWRITFMEEIE, PTLUE SR [example, color, height,
width, channel] KERFR— ARC-AGI 7 ., FIF@EELEIRFRMATIAL
Mg, SEFEELERTERMUE, HELEFERMEMME (one-hot) FRIEFE XK
ZMEN® . [example, height, channel] #1 [example, width, channel] i
S XMt A T FEARE DRGSR KR .

HEANTEZKE LV RIREN, RNMRIKFIEIREEEEERRRAIRLIE (batch)
HE . FIESBEUA, SNREIBEERSIHTES], XBRTERNERE]
RFBRITERTFERNEZR, FriEFREERRISTE -

fR D RUPHNEE

D.1 fi#i3/F (DECODING LAYER) ZEM{ERAERRE—1ZKE z HIEFIEEER
B, AEBHEHEZEIT R . ZBREFEIEN z 2165 N(0,1) ZiER KL #E



o 1EST KL BUERILABALE CompressARC LUKREZERN A TNICIZ R, BN EE
AR o

BixsRii, SHMEER z REIFEMNITEN, ZEMIBENST KL BLEERE
BEIEY; RIRRMEAK, HEREMES .

FT20 W

D.2 ZKEEEE (MULTITENSOR COMMUNICATION LAYER) iZE 5 — 1N %3k
SPNAEKRERERE , Hi, RERERNBANBISKERTZFIRANEEK
N (AT@ER 8, MLEBER16) . A, HERAXIAEGEVHEBELE" (H
LiEfE) HEZEREE (ATEE) NI EHMKE .

NE 9 Fii, XMUEE BB GHEERTIEUBREE (), HBEIBUEFTE

(unsqueeze) I #% (broadcast) #ELUENAEEREIEN . SN KSRKEIW
FrEHEBESBRMAFHITIT— . £REZT ERE (up-projected) fEMMEIEIFKER
F,

& 9: ZiKEBER, aMKERREINSE, BHEERERS, KEBIIELYE
(mean reduction) FEUERFEHEEEARERZEEEIE

D.3 SOFTMAX & ZEARTHELIERATHVEART, BTRHERM SN HIRE
IRAMENT ARSI o WTFHRAZKEFNENIKE, ZEFILAERTEN4ERE
FEEIHIT softmax 1R1E, FHIGFTE softmax EMEREEELE LHHE . LR
EZKEFARKENKMS o ZEFRATRIEIT—L (pre-norm), HiEIEFKE
KRR ERERFITIRE o

BHRERDSINEENFZTRNSE 21 TS 22 T2



XEZEXEE 21 TIHE 22 TIRHCENE:

1!

HITBESEE EHHEFRE Softmax FRIER. RIBIKEMNTR, ZIKEPFRIKEN
bR IBFAARRE. ZENATHEII—K (pre-norm), HiBIEKERT S
ERFITIRE, ZERBMNEEEEN 2,

D.4 ERRTFIRAE/IFEEE (DIRECTIONAL CUMMAX/SHIFT LAYER) EH £ &
KB (Cummax) FF# (Shit) BAFMEUZFTHAXAITIEFELR Cummax
0 Shift 1&1E, BIEREN— 1 AENARE, BREEFNBEZKEBEREN
REETATRERIERNE M, XEEEERNNETEXZKENTE A ELEE
W —RE: BFEEERBNERHNEHFITRIRIRME, HR, XEKREHE]
R ATEETTIRE, RIMEATHERMBEIRSAEENRS|, XBENSTR/EE

o

EM Cummax RIRENABLEERN 8 MR35, BEMIFMAMN—ERE (4 &
HEm, 4 MAAME), A MIFNENS R ERITERERE, X—FHEE
TR A A LLRITHERERRE, FRUAEFESOEREE. B 10 487 REE.
ENRARREAEZE, YARERERER/IVE -1 MRAE 1 ZiE

EEFZEHITHERNRE, ERFENETE—ITMEER, MARNARREAE,
BARHEITEWSER.

o BIBKERFESAREMEITRE, FHEIEIT—K.
o HMNBEHEEN 4

o XLEERNWAFHNZIKEFH [example, color, direction, height,
width, channel] # [example, direction, height, width,

channel] IKZE.

10: EM Cummax B, ZR{EABITF CompressARC 1EiEMEHEHKER
FHER.

D.5 EFiE{SE (DIRECTIONAL COMMUNICATION LAYER) ZUABERT, MLt
8 MHMMERESFTR, BRNMNIAEENEFEMENE THRITE. Eit, ZERHT



—MIRIEM TN A RZENAEE, EAREENK MR ZERIXERRIG %,

=27

ZEN 64 FETREMNAEA S D IEX T — MRS, BEMEMRSTIINEWR/VR
EHE, MAFRERBEEMRFMNEEREEEL Y. ATENAETTIRE,
FEGEENRS LB, XTHEFEER. KEPHNENAETIFERHE 8 £H
B, FRERMEM. ZEBISKERTSHRERME, FTEEA—t. BAE
BHER 2,

D.6 JEZ14E (NONLINEAR LAYER) @B E 7 16 BY SiLU JELMEUE
RER, AETFETEI—CNEKERFEEE,

D.7 Y3—/E (NORMALIZATION LAYER) {10 Z K EPRIFTEKEHTTIT—
&, ERBREEEEIITEEEHENIENLTE. HERIERRYI—LE
BB LUXMHFINIET.

D.8 £k (LINEAR HEADS) Hf TATURIGRANZKE, FHIFHLRN ARC-
AGI RIS, BAEMKMIN, Fi1BIEZKERA ARC-AGI & LRI,
DAE L B SR 2 ROk e A8 B R EAA A

11 ZMELEMNZERNRLSHKETIRIGIE, BEAHE Logits MARE
=N

FPRGINRAFBBEGEREER [example, color, height, width,
channel] SKEFEX Logits, BEHEELMEMET N 2, RBAFME LML, FEMU
RARXIEAL, HEFEMME E#H1TRIIML,

KIERIEAERURE: 0 EFM 180 EN 1, 45 EM 135 EN 0.2, 90 EN
0.4, ZRMEBREFHIRL AN MRAER, EEFIIERREE,

BHRERDPSIVEENFZTHRNSE 23 TTHNSE 24 1152

XEZEXEE 23 TIHE 24 TIRHCENE:

$23 7



FHFIEEERARBIMNE, EF [example, height, channel] #1 [example,
width, channel] KEXRCIESIEIENERIGEFENESELIIFNG S, NE
1M iR o B, BELEEWRIRE KN 2, DRIFTAEANMBELEMNE . FFETK
1%, EMNABE—TKNMA [width] BIEAEN—PMKNA [height] BIAE . B—
MR BIXTERTAREN 2T R REERN SR ETI R SMUERN S . AEEE
AIRETI R BOFTEUMAAT—1b, FEEEERN 1, SMIFNEEH—RERNEE
Logits EX o EXWFRED A, FHITIER LOFEILIE]RY B AR @ ey 33 224
R, BREFEREMWRE,

E HAthZR4 T

E.1 B HKERNFN

1. BAEEED—NETRA (non-example) HE ., REIRT SEE. AR, 1T
MyExZI, HEBEEMRFFRM

2. MREETREHSEHLE, WENEERHEE , LERMNREEHRELE,
MM EETHIEERSIR . WFRLEME, KIUEMKEZAEX -

E.2 3 RS HeRE M IRINERE SN ZKEFNE N KENAFRNLILER,
BN EAREESEREAENKERE—TAILE, NEEREEREREE
HERNKEIRES —MEME . RBHIAXMER, RNMIBElRINEHER
—ite, URFBINMENALRFN 90 EIRENSFEE (XETMSIRTEEM
=EHE) o Softmax BRBTEMNME, RNHMENRERSIMETRER
Softmax 4£EHG . EWMHPEXLENEZIFEEREFN, BN TIRHARIMERERA
HANE, FEIEATZE XS -

E.3 JIZR/#N8a14E B 1ER Adam L2817 2000 RERINZ, FIZFN 0.01, f
7905, B, 709, NEEAKLEFER Xavier ES DAL (Xavier normal

initialization) o

F FiisbhiE

F.A WERAE RIGEIER R MARAINIRAER, MEENEEITEEER RN
B o HAMIBIARIDFRIREZ N T BRXMAZAF—RREA . EHITERI



“rzml, BISHIELTEN ARC-AGI Rl B E1EU T =M el seB9 AR —2IER
m -

1. SEREPEEARIEE SHENBBANFAER o

2. BERBAFIBRNAREER o

B 24 T
3. ATERFEDMEEREASREER .

ETFAN 1A 3, BAISHINZB B RO AR, KAZERN 1, WRE—
MWL, B IBREMKEFTERNERN, =EBHlRGESRE SN
Ko MRMNUIYARRLIL, B IRBITNLE E B FFIENRNEAREENSE,

H AT ZRT B NRR » AEXTFTNNEABZEENSERENZKE
RENSEHLENRY . UM RABEANBIEATZIKERE. ERBEUNRE
ERREAXEFZE . ATFREREIURBATAAZIZHRASE-ERA, Tl
RBERHMENAET .

F.2 BREaE HITEED, T/LFFAEM ARC-AGI s, REFRHIMMEEH
FEHUMEELERF . Alt, FRARE®REFHINEEHIESKENAE
HEPDERS . LI, BEEMAEHREE, FEAELZKER, BAEBEE
WEREPRARER . #HITOBSEN, SENAKMLEEERLEEN— 2
TiksE, UAKREED Logits -

G B E

RTEMRNEREMER z NI ERTE, HMNEEMIGIBPREESR
I, BRI, BATERLIVIRESHN—MEANEREIREATN . XELHE
KERBANTKIEZAMBRBEENE R . B8F, SR(TEIRNEAE%ERE
Logits HEXERAME (argmax) MMEREFEREN, MESHEIRE, BEE/LIMHE
NMEELBIERAS o B IFAT IIMERILRIZERTGIE



1. IRFEFERBRZNER

2. TEHT Softmax ERMIR 2RI, WEMLEG Logits WIERIZEIFLY . [FRY
AFES TR Ce R D S

3. TE#{T Softmax Zf5, MWEMmbENEIRAVIEHEEIT . ERORHEDATE
HIEETY o

N AXERARR, 22N THRESNTA, ARBZYIAPHRESHY
B& . HMRRTIMEEMHZ AN, REXATHE 1M 2AEE !

o EBREAT, FITREERURIEBZNTIIER (RRZX decay = 0.97
)

o

o MREVIZBIET 150 JERK, MFZERNERME e ' F (LFLERITAN

ZER) o

o MRERREIEHBIHTIIMIFLRERE, WIFNERE e 12,

BHRERRSNEEIFIETRHOSE 25 TS 26 1132

XEBRE]IESE 25 TS 26 IR CERE:

- L

o v RIE o 10 uncertainty prp ety s Hh uncertainty (RHIEN) 25
MEEWDEARSHIEMEN AN RERNTIIE BREGRE),



H CompressARC LM RINEEH S RRYE

12: 7 28e73c20 J2E CompressARC HfRSZE,

CompressARC B LUAITHIRE )/ R ER Bl FE:

o e ABRNIRDEREHE (ZRHE 0ca9ddbs).

o *{AZE (Infilling) (B 0dfd9992),

o 5] (Cropping) (B 1c786137),

o e FARSIEIES, HIE 45 BEXALK (BII%A 11876c06) .

o T EIGRN (B 11876c06).

o ¥ INRIGREENKXR (BILIFE 42a50994)

o " ABRNROIDERESE (SRIEHE 3bd67248),

o M RRIRIKAIARERS (B 025d127b) o

o vrrx KEURTIWIZ (BNLIFE 025d127b),

HNVAAXLERENEREMPIIFENER TR, XEEEHRNATIET
CompressARC XLEGENTE1iZITHE

CompressARC A ITRIRES T B R EAEFE:



o M IMMEIBHEENN (SR 0d3d703e),

o v S REBEE—TUR(E (IR 0a938d79).

o ™ ITEUHF (BRI ce9e57f2),

o M IEFZ. hEkk. RET. dark. BBRES (BRiE 0e206a2e, 5ad4f10b,
2bcee788),

o P AOMIFRFMERR, WEEM (Bt 7b601669) .

o LRI, RINEREIARITTN (BRI 2dd70a9a),

o P MK IEEIEM (I EXE 12b AV 28e73¢20) o

261
| BT (BASELINES)

= 1 A U-Net EEERIZ RN TMRERES CompressARC HHELIR THNET
BRI, XLELYREIE: BRBEFINEMING, DRIEHEIERREERE K%
ERNIGREIR. ZEERENIIZEZEEEES M NANEIRAN U-Net, HER U-
Net it i MARRGEEBFHITOE, WNARESH L MRFAR R LA R %R
Bk, HRESSNZ. 1 10,000 FillENEFEF T HIBIF- MR H Mg
WREMDNTNAEZR, FKITEEREMENEESNEELUE ARC-AGI WEIER U-
Net, U-Net B9 BatchNorm #&#&5 GroupNorm, WRBIEME /NI EH—F
A, MBI HRERGME ERER. FHiT=1S3 N ABYIE R TIRH R FTIR, B
BFEIGELRMTE (T8RN 2.5%, GIERN 1%), BITKFT7TXME

Eo

J RERBERER

XTFENMEENBEERIRERS, BERK 4 K5



3 4: CompressARC TFilll4&E ERBBUATRE, (EAHREBEITHEE, BT
TAREARFBENRE (pass@n) LR, EAEAENRLU 2 RAFBENERS,
SIl|ZREE R ARBT A ZTE NVIDIA RTX 4070 GPU LiZIAF#=RiZ R,

IR BY Pass@1 Pass@2 Pass@5 Pass@10 Pass@100 Pass@100
7. AV =]

100 6 1.00% 2.25% 3.50% 4.75% 6.75% 6.75%
N
B

200 13 11.50% 14.25% 16.50% 18.25% 23.25% 23.50%
N
iN}

500 32 23.00% 27.50% 31.50% 33.50% 39.25% 40.75%
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ABSTRACT

Conventional wisdom in the age of LLMs dictates that solving IQ-test-like visual
puzzles from the ARC-AGI-1 benchmark requires capabilities derived from mas-
sive pretraining. To counter this, we introduce CompressARC, a 76K parameter
model without any pretraining that solves 20% of evaluation puzzles by minimizing
the description length (MDL) of the target puzzle purely during inference time.
The MDL endows CompressARC with extreme generalization abilities typically
unheard of in deep learning. To our knowledge, CompressARC is the only deep
learning method for ARC-AGI where training happens only on a single sample: the
target inference puzzle itself, with the final solution information removed. More-
over, CompressARC does not train on the pre-provided ARC-AGI “training set”.
Under these extremely data-limited conditions, we do not ordinarily expect any
puzzles to be solvable at all. Yet CompressARC still solves a diverse distribution
of creative ARC-AGI puzzles, suggesting MDL to be an alternative feasible way to
produce intelligence, besides conventional pretraining.

1 INTRODUCTION

The ARC-AGI-1 benchmark consists of abstract visual reasoning puzzles designed to evaluate a
system’s ability to rapidly acquire new skills from minimal input data (Chollet, |2019). Recent
progress in LLM-based reasoning has shown impressive skill acquisition capabilities, but these
systems still rely on massive amounts of pretraining data. In this paper, we explore how little data is
truly required to tackle ARC-AGI by introducing CompressARC, a solution method derived from the
Minimum Description Length (MDL) principle (Rissanen, |1978). CompressARC performs all of
its learning at inference time and achieves 20% accuracy on ARC-AGI-1 evaluation puzzles—using
only the puzzle being solved as input data.

The key to CompressARC’s extreme data efficiency is its formulation as a code-golfing problem:
to find the shortest possible self-contained program that outputs the entire ARC-AGI dataset, with
any unsolved grids filled arbitrarily. By Occam’s razor, we may expect the shortest program to fill
the unsolved grids in the most sensible way, which is with “correct” solutions that match the rules
of the puzzle. An overly basic program might store a hard-coded string of the puzzle data (plus
arbitrary solutions) for output; but the program will be too long, implying the outputted solutions
will be wrong. On the other hand, finding the optimally shortest program would require exhaustively
enumerating many candidate programs, which is computationally infeasible (Solomonoff] |1964;
Hutter, 2005). CompressARC strikes a new type of balance by overfitting a neural network to the
puzzle data to compress the puzzles into weight matrices; these weights can be hard-coded into
the program instead of the puzzles themselves, and then used within the program to recover the
memorized puzzles with solutions. With careful counting of the bit length of the hard-coded weights,
this technique converts the combinatorial search of finding the best program into a differentiable
optimization problem, allowing us to minimize program length in a reasonable amount of time and
still generate good solution predictions.

This framing preserves several attractive properties of the original code-golf formulation, all of which
are novel when it comes to neural solutions to ARC-AGI:

* No pretraining: Since we begin with the target puzzle(s) in hand, no training phase is required.

*https://iliao2345.github.io/
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* Inference-time learning: Program length is minimized solely during inference by optimizing
network weights with respect to the target puzzle(s).

* Minimal data requirement: Following Occam’s razor, we assume strong generalization from the
shortest program and use only the puzzle(s) themselves—no additional data is loaded into memory.

Despite never using the training set, performing no pretraining, and having only 76K parameters in
its network, CompressARC generalizes to solve 20% of evaluation puzzles and 34.75% of training
puzzles—performance that would be impossible for traditional deep learning methods under these
constraints. CompressARC’s strong performance in this setting suggests that bringing information
compression to other data-limited contexts beyond ARC-AGI (e.g., drug discovery, protein design)
may help us extract stronger capabilities in those applications as well.

The remainder of this paper introduces the ARC-AGI benchmark (Section [2), details the problem
framing (Section[3)), describes CompressARC’s architecture (Section[d), presents empirical results
(Section 5)), and concludes with a discussion of implications (Section o).

2 BACKGROUND: THE ARC-AGI BENCHMARK

ARC-AGI-1 is an artificial intelligence benchmark designed to test a system’s ability to acquire new
skills from minimal examples (Chollet, |2019). Each puzzle in the benchmark consists of a different
hidden rule, which the system must apply to an input colored grid to produce a ground truth target
colored grid. The hidden rules make use of themes like objectness, goal-directedness, numbers &
counting, basic geometry, and topology. Several input-output grid pairs are given as examples to help
the system figure out the hidden rule in the puzzle, and no other information is given. Figure [ shows
three examples of ARC-AGI-1 training puzzles.

" ﬁ
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(a) Hidden rule: Shift every ob- (b) Hidden rule: Shrink the big (c) Hidden rule: Extend the
ject right by one pixel, except the object and set its color to the scat- green line to meet the red line by
bottom/right edges of the object. tered dots’ color. turning when hitting a wall.

Figure 1: Three example ARC-AGI-1 puzzles.

While solutions based on LLMs built using internet scale data have scored 87.5% on this benchmark
(Chollet, 2024), and neural networks trained on only ARC-AGI data have scored 40.3% (Wang et al.,
2025)), CompressARC takes the data-minimal perspective to its limits, opting to only train on the test
puzzle.

Appendix [[] contains more details about the ARC-AGI-1 benchmark. An extended survey of other
related work, including other approaches for solving ARC-AGI, is also included in Appendix [A] Note
that we will generally refer to ARC-AGI-1 just as ARC-AGI in this paper.



3 METHOD

CompressARC tries to solve the problem of compressing the data into as short a program as possible,
to obtain the puzzle solutions while keeping the program search feasible. In this case, the code
must be entirely self-contained, receive no inputs, and must print out the entire ARC-AGI dataset
of puzzles with any solutions filled in. It is typically infeasible to run a full algorithmic search to
find the absolute shortest program, because we would have to search through a huge number of
increasingly lengthy programs to find one whose printout matches our requirements. CompressARC
makes program search more amenable by restricting itself to a suitably well-conditioned subspace of
programs. Our overall strategy, which we will explain in more detail in the following sections, will
be as follows:

* We define a space of programs through a template program (Algorithm[T)) which contains numerous
empty spaces for hardcoded values (“seeds”) to be included. These hardcoded seeds will complete
the program, so that it can be run, and the program will print out puzzles with solutions.

* We define a search algorithm (Algorithm [2) which enumerates many possible seeds to place in
these spaces, and selects a good set of seeds to make Algorithm[T]as short as possible, with the
constraint that its outputted puzzles are the given puzzles, but the solutions are unconstrained. Most
of the algorithm length will be taken up by the length of the seeds, so it suffices to only count up
the total length of the seeds to approximate the program length.

* Only some parts of Algorithm [2] are necessary to output the solution; the rest are only involved
in generating the actual compressed representation of the puzzle. To solve the puzzles, we only
keep the former parts, and we approximate parts of the search with a gradient descent procedure
(Algorithm [3). Our differentiable approximations of the various seed lengths will be analogous
to the individual components of the loss function for a variational autoencoder (VAE) (Kingma &
Welling| 2022).

Puzzle/solution data format: Each puzzle takes the form of a tensor of shape [n_example,
width, height, 2], containing color designations for every pixel in the 2 X n_example grids.
Here, n_example counts the total number of input/output grid pairs in the puzzle, including the
test grid pair whose output grid is not known. The shapes listed in this section are for explanatory
purposes and the actual data format is introduced in Section[d] A naive first try at code-golfing the
dataset may involve writing a program that hard-codes each puzzle in a giant string and prints it
out. Improvements can be made by clever ways of de-duplicating structures in the printed data (e.g.,
introducing for loops, etc.); we will detail our own particular strategy below.

3.1 RESTRICTING THE PROGRAM SPACE

We begin to derive CompressARC by picking a program subspace consisting of a template program
(Algorithm[I)) to be completed by substituting various hard-coded values into designated locations
(shown in red). The template program generates each puzzle independently, and performs the
operations for every puzzle:

1. It randomly samples a tensor z of shape [n_example, n_colors, width, height, 2] from
a standard normal distribution, (line 4) (There will be a sampling seed, whose length will be
analogous to a VAE’s KL loss term.)

2. processes this with a neural network equivariant_ NN which outputs a [n_example, n_colors,
width, height, 2]-shaped logit tensor, (line 6)

3. and obtains a [n_example,width, height, 2]-shaped puzzle by sampling colors from the
probability distribution implied by the logit tensor (line 8). We hope these colors match the
given puzzle. (There will again be a sampling seed, whose length will be analogous to a VAE’s
reconstruction loss term.)

The neural network equivariant_NN is a neural network that is “equivariant” to valid transformations
of ARC-AGI puzzles. This means when the input/output pair order or colors are permuted, or a flip
or rotation is applied to the input z, then the output of the neural network will also be transformed in
the same way.
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Algorithm 1: Template for a short program that produce completed puzzles Pjjeq With solutions
filled in. Red text is to be substituted in with hard-coded values produced via Algorithm 2]

Define an equivariant_NN architecture;

Set seed_z = <seed_z;>; Hardcoded seed from Algo [2| puzzle 1
z « sample 4 ,(N(0,1)); Generate inputs z
Set 0 = < 0, >; Hardcoded weights from Algo 2] puzzle 1
grid_logits <— equivariant NN, (z); Forward pass
Set seed_error = <seed_error;>; Hardcoded seed from Algo 2} puzzle 1
Piillea 4 sample .y oo, (grid_logits); Generate puzzle
Print Pﬁued

Set seed_z = <seed_z5>; Hardcoded seed from Algo puzzle 2

(...code repeats for all puzzles)

The template program allows for two pseudo-random sampling seeds to be filled in for every puzzle
(lines 3 and 7). The resulting printed puzzles can be guaranteed to match the true puzzles in the
dataset by manipulating the final seed in line 7, which works after choosing any seed on line 3. With
this guarantee in place, we can sum up the length of the code for the template, and find that the total
length varies based on the number of bits/digits required to write down the two seeds. So, in order to
search for short programs, we just need to make all the seeds as short as possible.

Multiple areas of the program can be adjusted to help minimize the seed length, and we will cover
each in respective sections: the seeds and the weights on lines 3, 5, and 7 (Section [3.2] below), and
the architecture on line 1 (Section[d).

3.2 SEED OPTIMIZATION

Algorithm [2] presents a method of optimizing the Generates

seeds and weights in template Algorithm|[I]to reduce i 1

the total seed length. It first tries to manipulate the | 1

seed on line 3 of the template to imitate z being | !

sampled from a different learned normal distribution | :

(line 8), and then tries to manipulate the second seed | (" Given :
: !
{ 1
! 1
{ 1
{ 1
{ 1
{ I
\

Unknown

CompressARC

ARC-AGI (Algorithm 3)
-~ -

Solutions

Y

Approximates
A

)
_| Naive Code-Golfer

to guarantee matching puzzle output (line 1 1?. I.t I;RC-»IAGI mouts~| (Algorithm 2)

then performs gradient descent on the normal distri- uzzles J | into T snortene
bution parameters and the neural network weights | code for
to minimize the total seed length (lines 13-14). ARC-AGH Prints (" snort Program )
The idea of “manipulating the sampling seed for ' _Pataset (__(Algorithm 1)

one distribution to imitate sampling from another

distribution” tends to be fraught with technicalities Figure 2: CompressARC approximates a spe-
and subtleties. Under favorable conditions, this cific compression algorithm that converts the
is cleanly achievable through rejection sampling ARC-AGI puzzle dataset into the shortest pro-
(Forsythel [1972), which produces a sample from gram that prints it out exactly, along with any
the imitated distribution using a seed whose ex- solutions. These printed solutions are assumed
pected length is the max log probability ratio be- to be good predictors of the actual solutions,
tween the two distributions. This can subsequently according to Occam’s razor.

be improved and extended towards more general

conditions using Relative Entropy Coding (REC)

(Harsha et al.,|2010; Havasi et al., 2018} |[Flamich et al.,[2021), where the expected seed length lowers
to the KL divergence between the two distributions, at the cost of only approximately achieving the
desired sampling distribution. We refer readers to these references for details.

Our main issue with seed manipulation using REC within Algorithm |2{on lines 8 and 11 is that
running REC requires exponential time in the divergence between the imitated distribution and the
sampling distribution (Flamich et al.l 2021). So to make it faster, we skip these steps and imitate their
expected downstream consequences instead, resulting in CompressARC (Algorithm [3). Namely for
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Algorithm 2: Minimize Description Length, a.k.a. code-golf. n_example denotes the total
number of input/output pairs in the puzzle, including the test pair where the output is unknown.
Line 11: The smallest possible seed_error is picked so that the sampled puzzle Pjeq on line 12
matches the true puzzle P on both the input and output grids of demonstration pairs, as well as
the test inputs, but with no restriction on the test outputs.

Input: ARC-AGI dataset;

Define an equivariant_NN architecture;

foreach puzzle P in ARC-AGI dataset do

Randomly initialize weights 6 for equivariant_NNy;

Observe the dimensions n_example,n_colors,width,height of puzzle P;

Initialize input distribution: p of shape [n_example,n_colors,width,height,2],
and diagonal X;

foreach step do

Set seed_z, by manipulating to imitate z ~ N (u, X);

z < sample.q ,(N(0,I),shape=[n_example,n_colors,width, height,?2]);

grid_logits < equivariant NN, (z);

Set seed_error, by manipulating to obtain desired puzzle P;

Pritea < sampleseedﬁertor(grid—logits);

L «+ len(seed_z) + len(seed_error); ~len(Algo[l) + C

W, 2,6 < Adam(V,L,VsL,VyL);

end foreach

Insert values seed_z, 6, and seed_error into the pseudo-code for Algo

end foreach

Return code for Algo

line 8, z is now directly sampled from the imitated distribution, and the seed length from line 13 is
replaced by its expected length, which is very close to the KL divergence between the imitated and
sampling distributions according to the properties of REC (Flamich et al., 2021). For line 11, the
unknown grids of the puzzle are sampled directly, and the seed length from line 13 is approximated
closely by the negative log likelihood of sampling the known grids exactly, i.e., the cross-entropy
(see Appendix [B]for derivation).

Algorithm 3: CompressARC. It is the same as Algorithm 2] but with simulated seed manipulation,
and truncated to return solved puzzles instead of description.

Input: ARC-AGI dataset;
Define an equivariant_NN architecture;
foreach puzzle P in ARC-AGI dataset do
Randomly initialize weights 6 for equivariant_NNy;
Observe the dimensions n_example,n_colors,width,height of puzzle P;
Initialize input distribution: u of shape [n_example,n_colors,width,height,2],
and diagonal X;
foreach step do
z  sample(N (u, X));
grid_logits <— equivariant NN, (z);
L + KL(N(u, 2)||N(0,1)) + cross-entropy (grid_logits, P); ~len(Algo[l) + C
w, 3,0 < Adam(V,L,VsL,VyL);
end foreach
Prilea + sample(grid_logits);
Add Pjjjeq to solved puzzles
end foreach
Return solved puzzles

Algorithm 3] (CompressARC) is now able to automatically compress the ARC-AGI dataset through
successive refinement of template Algorithm [I] outputting solutions afterward. The only remaining
component to specify is the neural network architecture used within template Algorithm [I} which we



will design by hand. Since the architecture definition only appears once in Algorithm [I] while seeds
appear repeatedly for every puzzle, using a sophisticated architecture can help us shorten the length
of the template Algorithm [T} by trading off architecture description length to allow for shorter seeds.
This serves as the primary motivation for us to heavily engineer the neural network architecture.

4 ARCHITECTURE

The central idea in designing the neural network architecture is to create a high probability of sampling
the ARC-AGI puzzles, consequently reducing the length of the seeds and by extension the length of
template Algorithm|l} According to the template structure, this means we need the neural network
to have good inductive biases for transforming noise into reasonable-seeming ARC-AGI puzzles.
The training puzzles play no role in our method other than to boost our efforts to better engineer the
inductive biases into our layers.

Since ARC-AGI puzzles would be just as likely to appear in any combination of input/output example
orderings, colors, orientations, etc., we want our network to assign them all equal probability by
default. So, we made our architecture equivariant to example permutations, color permutations,
rotations, and flips; (Cohen & Welling} |2016a)) guaranteeing that computations applied to transformed
inputs result in equivalently transformed outputs. For any asymmetries a puzzle may have, we require
Algorithm [3]to manipulate the seed of the random input z, to bias the outputted puzzle one way or
another.

4x’-------------------------‘\
] ) \
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J |
| |
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Figure 3: Core structure of CompressARC’s neural network, which operates on multitensor data.
Individual operations (colored) read and write to a residual backbone through learned projections
(grey) in the channel dimension. The network is equivariant to permutations of indices along the
other, non-channel dimensions as a result. Some layers like cummax break certain geometric
symmetries, giving the architecture specific geometric abilities listed in Appendix [H] Normalization,
softmax, shift, and directional layers are not shown.

The architecture, shown in Figure [3] consists of a decoding layer functioning like an embedding
matrix (details in Appendix [D.I)), followed by a core with a residual backbone, followed by a linear
readout on the channel dimension (see Appendix [D.8). In the core, linear projections on the
channel dimension read data from the residual into specially designed operations, which write their
outputs back into the residual through another projection. Normalization operations are scattered
throughout the layers, and then the whole block of core layers is repeated 4 times. This is much
like a transformer architecture, (Vaswani et al.,[2023)) except that the specially designed operations
are not the attention and nonlinear operations on sequences, but instead the following operations on
puzzle-shaped data:

* summing one tensor along an axis and/or broadcasting the result back up, (see Appendix
* taking the softmax along one or multiple axes of a tensor, (see Appendix [D.3)

* taking a cumulative max along one of the geometric dimensions of a tensor, (see Appendix [D.4)

* shifting by one pixel along one of the geometric dimensions of a tensor, (see Appendix [D.4))



* elementwise nonlinearity, (see Appendix [D.6))

* normalization along the channel dimension, (see Appendix [D.7)

along with one more described in Appendix [D.5] The operations have no parameters and have their
behaviors controlled by their residual read/write weights. All of these read/write projections operate
on the channel dimension. We used 16 channels in some parts of the backbone and 8 in others to
reduce computational costs. Since these projections take up the majority of the model weights, the
entire model only has 76K parameters.

The actual data format that the neural network uses for computation is not a single tensor shaped like
[n_example, n_colors, width, height, channel], but instead a bucket of tensors that each
have a different subset of these dimensions, for example a [n_colors,width, channel] tensor.
Both the input z to the network and the outputted logits, as well as all of the internal activations, take
the form of a multitensor. Generally, there is a tensor for every subset of these dimensions for storing
information of that shape, which helps to build useful inductive biases. For example, an assignment
of grid columns to colors can be stored as a one-hot table in the [color, width, channel]-shaped
tensor. More details on multitensors are in Appendix [C]

5 RESULTS

We gave CompressARC 2000 inference-time training steps on every puzzle, taking about 20 minutes
per puzzle. CompressARC correctly solved 20% of evaluation set puzzles and 34.75% of training set
puzzles within this budget of inference-time compute. Figure ] shows the performance increase as
more inference-time compute is given. Tables 4] and [5]in the Appendix document the numerical solve
accuracies with timings.

Table 1: Comparison of solution accuracies of various methods for ARC-AGI-1, sorted by the amount
of training data used. Each method makes two solution guesses per puzzle, and a guess is only correct
if the grid shape and pixel colors are all correct. The U-Net (Ronneberger et al.,[2015) baseline is a
supervised model trained during inference time on only the demonstration input/output pairs of grids
in the test puzzle to match the constraints of CompressARC; details in Appendix E}

Method Trained on: Neural Acc. Dataset split
Random guessing Nothing X 0% All

Brute force rule search (Kamradt, 2024 Nothing X 40% Private Eval
U-Net baseline Target puzzle v 0.75% Public Eval
CompressARC (ours) Target puzzle v 20% Public Eval

HRM ablation (ARC Prize Team, [2025) Test puzzles (4 31% Public Eval
HRM (Wang et al.| [2025) Train+test puzzles v 40.3% Public Eval

OpenAl 03 high (Chollet, 2024) Internet scale data v 87.5% Semi-Priv. Eval

5.1 WHAT PuzzLES CAN AND CAN’T WE SOLVE?

CompressARC tries to use its abilities to figure out as much as it can, until it gets bottlenecked
by one of it’s inabilities.

For example, puzzle 28e73c20 in the training set requires extension of a pattern from the edge towards
the middle, as shown in Figure[T2a]in the Appendix. Given the layers in it’s network, CompressARC
is generally able to extend patterns for short ranges but not long ranges. So, it does the best that
it can, and correctly extends the pattern a short distance before guessing at what happens near the
center (Figure[I2b] Appendix). Appendix [H]includes a list of which abilities we have empirically
seen CompressARC able to and not able to perform.

5.2 CASE STUDY: COLOR THE BOXES

In the puzzle shown (Figure[5), one must color the boxes depending on which side of the grid the box
is on. We call this puzzle “Color the Boxes”.
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Figure 4: CompressARC’s puzzle solve accuracy rises as inference time learning progresses. Various
numbers of allowed solution guesses (pass@n) for accuracy measurement are shown. The official
benchmark is reported with 2 allowed guesses, which is why we report 20% on the evaluation set.

Human Solution: We first realize that the input is divided 1 B BN Bl |
into boxes, and the boxes are still there in the output, but
now they’re colored. We then try to figure out which colors . - - - m
go in which boxes. First, we notice that the corners are -

always black. Then, we notice that the middle is always

magenta. And after that, we notice that the color of the

side boxes depends on which direction they are in: red for

up, blue for down, green for right, and yellow for left. At

this point, we copy the input over to the answer grid, then I - . I - .
we color the middle box magenta, and then color the rest - R
of the boxes according to their direction. I - . I - .
CompressARC Solution: Table[2shows CompressARC’s

learning behavior over time. After CompressARC is done I . .

learning, we can deconstruct its learned z distribution to

find that it codes for a color-direction correspondence table — ?

and row/column divider positions (Figure[7).

During training, the reconstruction error fell extremely H

quickly. It remained low on average, but would spike up

every once in a while, causing the KL from z to bump Figure 5: Color the Boxes,
upwards at these moments, as shown in Figure [62] puzzle 272f95fa.

5.2.1 SOLUTION ANALYSIS

We observe the representations stored in z to see how CompressARC learns to solve Color the Boxes.

Since z is a multitensor, each of the tensors it contains produces an additive contribution to the total
KL for z. By looking at the per-tensor contributions (see Figure[6b), we can determine which tensors
in z code for information that is used to represent the puzzle.

All the tensors fall to zero information content during training, except for four tensors. In some
replications of this experiment, we saw one of these four necessary tensors fall to zero information
content, and CompressARC typically does not recover the correct answer after that. Here we are
showing a lucky run where the [color, direction, channel] tensor almost falls but gets picked
up 200 steps in, which is right around when the samples from the model begin to show the correct
colors in the correct boxes.

We can look at the average output of the decoding layer (explained in Appendix corresponding
to individual tensors of z, to see what information is stored there (see Figure . Each tensor contains
a vector of dimension n_channels for various indices of the tensor. Taking the PCA of these



Table 2: CompressARC learning the solution for Color the Boxes, over time.

Learning

steps What is CompressARC doing? Sampled solution guess

CompressARC’s network outputs an answer sample sample average
grid (sample) with light blue rows/columns
wherever the input has the same. It has no-
ticed that all the other input-output pairs in the
puzzle exhibit this correspondence. It doesn’t
know how the other output pixels are assigned
colors; an exponential moving average of the
network output (sample average) shows the
network assigning mostly the same average
color to non-light-blue pixels.

50

The network outputs a grid where nearby pix-
els have similar colors. It has likely noticed
that this is common among all the outputs, and
is guessing that it applies to the answer too.

150

The network output now shows larger blobs of
colors that are cut off by the light blue borders.
It has noticed the common usage of borders

200 to demarcate blobs of colors in other outputs,
and applies the same idea here. It has also no-
ticed black corner blobs in other given outputs,
which the network imitates.

The network output now shows the correct col-
ors assigned to boxes of the correct direction
from the center. It has realized that a single
color-to-direction mapping is used to pick the
blob colors in the other given outputs, so it
imitates this mapping. It is still not the best

350 at coloring within the lines, and it is also con-
fused about the center blob, probably because
the middle does not correspond to a direction.
Nevertheless, the average network output does
show a tinge of the correct magenta color in
the middle, meaning the network is catching
on.

sample sample average

sample sample average

The network is as refined as it will ever be.
Sometimes it will still make a mistake in the
sample it outputs, but this uncommon and fil-
tered out.

1500
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(b) Breaking down the KL loss during training into
contributions from each individual shaped tensor
in the multitensor z. Four tensors dominate, indi-
cating they contain information, and the other 14
fall to zero, indicating their lack of information
content.

Figure 6: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

vectors reveals some number of activated components, telling us how many pieces of information are

coded by the tensor.

component 0, strength = 0.2773546576499939

example

8 10 12 14 16
height

component 0, strength = 0.24215418100357056

example

7.5 10.0
width

12.5 15.0 17.5

(a) [example, height, channel] and
[example, width, channel] tensors. For
every example and row/column, there is a vector of
dimension n_channels. Taking the PCA of this
set of vectors, the top principal component (>1000
times stronger than the other components for both
tensors) visualized as the [example, height]
and [example, width] matrices shown above
tells us which example/row and example/column
combinations are uniquely identified by the
stored information. For every example, the two
brightest pixels in the top matrix give positions
of the light blue rows in the puzzle grids, and
the darkest two pizels in the bottom matrix
indicate the columns.

component 0, strength = 0.24497896432876587
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(b) [direction, color, channel] tensor. A
similar style PCA decomposition: the graph shows
the top principal component for this tensor. The
four brightest pixels identify blue with up, green
with left, red with down, and yellow with right.
This tensor tells each direction which color to
use for the opposite edge’s box. The top princi-
pal component is 829 times stronger than the next
principal component.

Figure 7: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

6 DISCUSSION

The prevailing reliance of modern deep learning on high-quality data has put the field in a chokehold
when applied to problems requiring intelligent behavior that have less data available. This is espe-



cially true for the data-limited ARC-AGI benchmark, where LLMs trained on specially augmented,
extended, and curated datasets dominate (Knoop, |2024). In the midst of this circumstance, we
built CompressARC, which not only uses no training data at all, but forgoes the entire process of
pretraining altogether. One should intuitively expect this to fail and solve no puzzles at all, but by
applying MDL to the target puzzle during inference time, CompressARC solves a surprisingly large
portion of ARC-AGI-1.

CompressARC’s theoretical underpinnings come from minimizing the length of a programmatic
description of the target puzzle. While other MDL search strategies have been scarce due to the
intractablly large search space of possible programs, CompressARC explores a simplified, neural
network-based search space through gradient descent. Though CompressARC’s architecture is
heavily engineered, its incredible ability to generalize from as low as two demonstration input/output
pairs puts it in an entirely new regime of generalization for ARC-AGI.

Efficiency improvement remains a valuable direction for future work on CompressARC. Compres-
sARC makes use of many custom operations (See Appendices[C|and D)), and adding JIT-compiled
kernels or fused CUDA kernels would increase the training iteration speed. Improvements will
naturally have a larger effect on larger grids since our architecture’s runtime scales with the number
of pixels in the puzzle.

We challenge the assumption that intelligence must arise from massive pretraining and data, showing
instead that clever use of MDL and compression principles can lead to surprising capabilities. We
use CompressARC as a proof of concept to demonstrate that modern deep learning frameworks can
be melded with MDL to create a possible alternative, complimentary route to AGI.
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A RELATED WORK

A.1 EQUIVALENCE OF COMPRESSION AND INTELLIGENCE

The original inspiration of this work came from the Hutter Prize (Hutter, [2006), which awards a prize
for those who can compress a file of Wikipedia text the most, as a motivation for researchers to build
intelligent systems. It is premised upon the idea that the ability to compress information is equivalent
to intelligence.

This equivalence between intelligence and compression has a long history. For example, when
talking about intelligent solutions to prediction problems, the ideal predictor implements Solomonoff
Induction, a theoretically best possible but uncomputable prediction algorithm that works universally
for all prediction tasks (Solomonoff], |1964). This prediction algorithm is then equivalent to a best
possible compression algorithm whose compressed code length is the Kolmogorov Complexity of the
data (Kolmogorov, [1998)). This prediction algorithm can also be used to decode a description of the
data of minimal length, linking these formulations of intelligence to MDL (Rissanen, |1978). In our
work, we try to approximate this best possible compression algorithm with a neural network.

A.2 INFORMATION THEORY AND CODING THEORY

Since we build an information compression system, we make use of many results in information
theory and coding theory. The main result required to motivate our model architecture is the existence
of Relative Entropy Coding (REC) (Flamich et al.l |2021)). The fact that REC exists means that as
long as a KL divergence can be bounded, the construction of a compression algorithm is always
possible and the issue of realizing the algorithm can be abstracted away. Thus, problems about coding
theory and translating information from Gaussians into binary and back can be ignored, since we can
figure out the binary code length directly from the Gaussians instead. In other words, we only need
to do enough information theory using the Gaussians to get the job done, with no coding theory at
all. While the existence of arithmetic coding (Langdon, |1984) would suffice to abstract the problem
away when distributions are discrete, neural networks operate in a continuous space so we need REC
instead.

Our architecture sends z information through an additive white Gaussian noise (AWGN) channel,
so the AWGN channel capacity formula (Gaussian input Gaussian noise) plays a heavy role in the
design of our decoding layer (Shannon) [1948)).

A.3 VARIATIONAL AUTOENCODERS

The decoder side of the variational autoencoder (Kingma & Welling| [2022) serves as our decompres-
sion algorithm. While we would use something that has more general capabilities like a neural Turing
machine (Graves et al., [2014) instead, neural Turing machines are not very amenable to gradient
descent-based optimization so we stuck with the VAE.

VAEs have a long history of developments that are relevant to our work. At one point, we tried using
multiple decoding layers to make a hierarchical VAE decoder (S¢nderby et al., 2016) instead. This
does not affect the KL calculation because a channel capacity with feedback is equal to the channel
capacity without feedback (Shannon, [1956). But, we found empirically that the first decoding layer
would absorb all of the KL contribution, making the later decoding layers useless. Thus, we only
used one decoding layer at the beginning.

The beta-VAE (Higgins et al.,2017) introduces a reweighting of the reconstruction loss to be stronger
than the KL loss, and we found that to work well in our case. The NVAE applies a non-constant
weighting to loss components (Vahdat & Kautz, [2021). A rudimentary form of scheduled loss
recombination is used in CompressARC.

A.4 OTHER ARC-AGI METHODS
Top-scoring methods to solve ARC-AGI rely on converting puzzle grids into text and then feeding

them into a pretrained large language model which is prompted to find the solution. The predominant
techniques involve either using the LLM to output the solution grid directly (Li et al., 2024b; Cole
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& Osmanl 2025} |Akytirek et al.| [2024)), or output a program that can be run to manipulate the grids
instead(L1 et al., 2024b; |Greenblatt, [2024; [Barbadillol 2025 Bermanl [2024). Oftentimes, these
methods employ several tricks to improve performance:

* Fine-tuning on training puzzle data

— Applying data augmentation to increase the effective number of puzzles to fine-tune on (Akytirek
et al., 2024)

— Fine-tuning on synthetic data (Li et al., |2024a}; |Akytirek et al., [2024)
* Employing inference-time training approaches

— Fine-tuning an individual model specific to each test puzzle, during test time (Akyiirek et al.,
2024)
— Test-time training (TTT) techniques (Sun et al.,|2020; Barbadillo} 2024))

* Sampling many model outputs or random augmentations of the test puzzle, for ensembling (Cole &
Osman, [2025; |Greenblatt, [2024))

e LLM reasoning (Chollet, 2024)

Such methods have managed to score up to 87.5% on the semi-private split of ARC-AGI, at a cost
of over $200 equivalent of inference-time compute per puzzle (Chollet, 2024). These approaches
all make use of language models that were pretrained on the entire internet, which is in contrast to
CompressARC, whose only training data is the test puzzle. Their commonalities with CompressARC
are mainly in the emphasis on training individual models on individual test puzzles and the use of
ensembling to improve solution predictions.

Aside from these methods, several other methods have been studied:

* An older class of methods consists of hard-coded, large-scale searches through program spaces in
hand-written domain-specific languages designed specifically for ARC (Hodel, [2024} |Odouard|
2024). While these methods do not use neural networks to solve puzzles and are less instructive
towards the field of machine learning, they share the commonality of using heavily engineered
components designed specifically for ARC-AGI.

* (Bonnet & Macfarlane} 2024) introduced a VAE-based method for searching through a latent space
of programs. This is the most similar work to ours that we found due to their VAE setup.

A.5 DEEP LEARNING ARCHITECTURES

We designed our own neural network architecture from scratch, but not without borrowing crucial
design principles from many others.

Our architecture is fundamentally structured like a transformer, consisting of a residual stream where
representations are stored and operated upon, followed by a linear head (Vaswani et al., 2023; He
et al.,[2015)). Pre-and post-norms with linear up- and down-projections allow layers to read and write
to the residual stream (Xiong et al.,2020). The SiLU-based nonlinear layer is especially similar to a
transformer’s (Hendrycks & Gimpel, 2023)).

Our equivariance structures are inspired by permutation-invariant neural networks, which are a
type of equivariant neural network (Zaheer et al., 2018; |Cohen & Welling| |2016b). Equivariance
transformations are taken from common augmentations to ARC-AGI puzzles.

B SEED LENGTH ESTIMATION BY KL AND CROSS-ENTROPY

In Section[3.1] we estimate len(seed_z) in line 12 of template Algorithm[2|as KL(N (1, X)||N (0, 1)),
and len(seed_error) as cross-entropy(grid_logits, P). In this section, we will argue for the reason-
ability of this approximation. Readers may also refer to|Flamich et al.| (2021)), which introduces a
better seed manipulation method as “Relative Entropy Coding” (REC). |[Flamich et al.|(2021)) shows
that seed communication is effectively the most bit-efficient way for an encoder and decoder to
communicate samples from a distribution () if there is a shared source of randomness P. This uses
nearly KL(P||Q) expected bits per sample communicated. We urge readers to refer to [Flamich
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et al.| (2021)) for details regarding the manipulation procedure, runtime and memory analysis, and
approximation strength. Below, we follow with our own effort at reasoning through why.

To recap, we original procedure in Algorithmmanipulates the seed for sampling z ~ N(0, I) to
simulate as though z ~ N (u, ), and we would like to show that we can closely approximate this
sampling using an expected number of seed bits close to KL(N (i, 3)||N(0,1)).

For sake of illustration, suppose for instance that Algorithm [2] implements something similar to
rejection sampling, (Forsythe, |1972) iterating through seeds one by one and accepting the sample
with probability min(1, cw(z)) for some ¢ < 1, where w(z) is the probability ratio

w(z) = N(z; p, %)
N(z;0,1)

When we pick a small enough ¢, the sampling distribution becomes arbitrarily close to N (u, ) as
desired. With this ¢, we would like to show that the expected number of rejections leads us to end up
with a seed length close to the KL.

We would first like to lower bound the probability Pycccp Of accepting at each step, which is

Prccont = / N(2:0, Imin(1, cw(z)) d=
:/N(z;O,I)min <1m> dz
_ / min (N (;0,1), eN(z 1, ) dz

We will follow a modified version of a derivation of the Bretagnolle-Huber inequality (Bretagnolle &
Huber, |1978)) by [Tsybakov|(2008) to derive a bound on the KL:

(1 + C) -Paccept 2(1 +c— -Paccept)Paccepl
= (/ max (N(z;0,1),eN(z; 1, 2)) dz) (/min (N(2;0,1),cN(z; 1, %)) dz)

where applying the Cauchy-Schwarz inequality with a function space inner product,

> (/ v/max (N(2;0,1),e¢N(z; p, £)) min (N (z;0, 1), N (2; 1, %)) dz) i
= (/ \/CN(Z;O,I)N(z;,u,E)dz)2
—=cexp (21n/\/N(Z;O,I)N(z;u,E)dz>

_ , N(2;0,1)
=cexp <21H/N(Z,[,L, E) Wdz)

N(z;0,1)
=cexp <2 InE, N5 [ W})

and following with Jensen’s inequality,
N(z;0,1)
2o (Beoncons |1 55 )
=cexp (—KL(N (u, X)||N(0,1)))

leads to an acceptance probability of at least

c
Paccept Zm exp (—KL(N(/},, Z)HN(Ov I)))
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Therefore, according to the rejection sampling procedure, the number of samples proposed (i.e. the
expected seed) is at most the inverse of this acceptance probability,

+c

seed_z < 1€ exp(KL(N (1, 2)|N(0,1)))

so the expected seed length is at most around the logarithm,
len(seed_z) <KL(N(u, 2)||N(0,1))+log(1l+¢) —loge
matching up with our stated KL approximation of the seed length.

For the seed_error term, Algorithm [2] manipulates the seed to sample a puzzle P from a dis-
tribution implied by some logits. This is effectively the same as sampling grid_logits ~
Categorical_distribution(logits) and manipulating the seed to try to get grid_logits ~
Delta_distribution(P). Then, the same KL-based bound on required seed length can be used once
again. The expected seed_error length is at most

KL (Delta_distribution(P)||Categorical_distribution(logits))+ log(1 + ¢) — log ¢
which simplifies as
d(x = P)
log . — .
Categorical_probability (x; logits)
5(P = P)
Categorical_probability (P; logits)

E;~Delta_distribution(P) +log(l+c¢) —loge

=log +log(1l+¢)—loge

= — log Categorical_probability (P; logits)+ log(1 + ¢) — log ¢
= cross_entropy(logits, P)+ log(1 + ¢) — log ¢

where the § is 1 when the statement within is true, and O otherwise.

C MULTITENSORS

The actual data (z, hidden activations, and puzzles) passing through our layers comes in a format that
we call a “multitensor”, which is just a bucket of tensors of various shapes, as shown in Figure[§]
All the equivariances we use can be described in terms of how they change a multitensor.

tensor
Multitensor [example, direction, height, width]

tensor
[direction]

tensor
[example, height]

tensor

[example, width] e

[color]

1
tensor
[example, color, direction]

tensor
[example, color, height]

tensor
tensor [example, direction]
[color, direction]

= 2/

Note: channel dimension not shown.

Figure 8: Our neural network’s internal representations come in the form of a “multitensor”, a
bucket of tensors of different shapes. One of the tensors is shaped like [example, color, height,
width, channel], an adequate shape for storing a whole ARC-AGI puzzle.

Most common classes of machine learning architectures operate on a single type of tensor with con-
stant rank. LLMs operate on rank-3 tensors of shape [n_batch, n_tokens, n_channels],
and Convolutional Neural Networks (CNNs) operate on rank-4 tensors of shape [n_batch,
n_channels, height, width]. Our multitensors are a set of varying-rank tensors of unique
type, whose dimensions are a subset of a rank-6 tensor of shape [n_example, n_colors,

18



n_directions, height, width, n_channels], as illustrated in Figure @ We always keep
the channel dimension, so there are at most 32 tensors in each multitensor. We also maintain several
rules (see Appendix [E.T)) that determine whether a tensor shape is “legal” or not, which reduces the
number of tensors in a multitensor to 18.

Dimension Description

Example Number of examples in the ARC-AGI puzzle, including the one with held-out

answer

Color Number of unique colors in the ARC-AGI puzzle, not including black, see Ap-
pendix[F.2]

Direction 8

Height Determined when preprocessing the puzzle, see Appendix

Width Determined when preprocessing the puzzle, see Appendix |F.1|

Channel In the residual connections, the size is 8 if the direct ion dimension is included,

else 16. Within layers it is layer-dependent.

Table 3: Size conventions for multitensor dimensions.

To give an idea of how a multitensor stores data, an ARC-AGI puzzle can be represented by using
the [example, color, height, width, channel] tensor, by using the channel dimension
to select either the input or output grid, and the height/width dimensions for pixel location,
a one hot vector in the color dimension, specifying what color that pixel is. The [example,
height, channel] and [example, width, channel] tensors can similarly be used to store
masks representing grid shapes for every example for every input/output grid. All those tensors are
included in a single multitensor that is computed by the network just before the final linear head
(described in Appendix D.§).

When we apply an operation on a multitensor, we by default assume that all non-channel dimen-
sions are treated identically as batch dimensions by default. The operation is copied across the indices
of dimensions unless specified. This ensures that we keep all our symmetries intact until we use a
specific layer meant to break a specific symmetry.

A final note on the channel dimension: usually when talking about a tensor’s shape, we will not
even mention the channel dimension as it is included by default.

D LAYERS IN THE ARCHITECTURE

D.1 DECODING LAYER

This layer’s job is to sample a multitensor z and bound its information content, before it is passed
to the next layer. This layer and outputs the KL divergence between the learned z distribution and
N(0, I). Penalizing the KL prevents CompressARC from learning a distribution for z that memorizes
the ARC-AGI puzzle in an uncompressed fashion, and forces CompressARC to represent the puzzle
more succinctly. Specifically, it forces the network to spend more bits on the KL whenever it uses z
to break a symmetry, and the larger the symmetry group broken, the more bits it spends.

This layer takes as input:

* A learned target multiscalar, called the “target capacity” The decoding layer will output z whose
information content per tensor is close to the target capacity

* learned per-element means for z

* learned per-element capacity adjustments for z.

'Target capacities are exponentially parameterized and rescaled by 10x to increase sensitivity to learning,
initialized at a constant 10* nats per tensor, and forced to be above a minimum value of half a nat.

’The actual information content, which the layer computes later on, will be slightly different because of the
per-element capacity adjustments.

*Means are initialized using normal distribution of variance 10~%.
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We begin by normalizing the learned per-element means for zﬂ Then, we figure out how much
Gaussian noise we must add into every tensor to make the AWGN channel capacity (Shannon, |1948)
equal to the target capacity for every tensor (including per-element capacity adjustments). We apply
the noise to sample z, keeping unit variance of z by rescaling

We compute the information content of z as the KL divergence between the distribution of this sample
and N(0,1).

Finally, we postprocess the noisy z by scaling it by the sigmoid of the signal-to-noise ratioﬂ This
ensures that z is kept as-is when its variance consists mostly of useful information and it is nearly
zero when its variance consists mostly of noise. All this is done 4 times to make a channel dimension
of 4. Then we apply a projection (with different weights per tensor in the multitensor, i.e., per-tensor
projections) mapping the channel dimension up to the dimension of the residual stream.

D.2 MULTITENSOR COMMUNICATION LAYER

This layer allows different tensors in a multitensor to interact with each other.

First, the input from the residual stream passes through per-tensor projections to a fixed size (8 for
downwards communication and 16 for upwards communication). Then a message is sent to every
other tensor that has at least the same dimensions for upwards communication, or at most the same
dimensions for downwards communication. This message is created by either taking means along
dimensions to remove them, or unsqueezing+broadcasting dimensions to add them, as in Figure 9]
All the messages received by every tensor are summed together and normalization is applied. This
result gets up-projected back and then added to the residual stream.

tensor
[example, color, direction]
unsqueeze mean reduce

tensor tensor tensor
[example, color] [color, direction] [example, direction]

tensor tensor
[exam [color] [direction]
[ ] [ ]

lllegal tensor -
See rules for legal multitensors

Figure 9: Multitensor communication layer. Higher rank tensors shown at the top, lower rank at the
bottom. Tensors transform between ranks by mean reduction and unsqueezing dimensions.

D.3 SOFTMAX LAYER

This layer allows the network to work with internal one-hot representations, by giving it the tools to
denoise and sharpen noisy one-hot vectors. For every tensor in the input multitensor, this layer lists
out all the possible subsets of dimensions of the tensor to take a softmax over]| takes the softmax

“Means and variances for normalization are computed along all non-channel dimensions.

SThere are many caveats with the way this is implemented and how it works; please refer to the code (see
Appendix [O) for more details.

We are careful not to let the postprocessing operation, which contains unbounded amounts of information
via the signal-to-noise ratios, to leak lots of information across the layer. We only let a bit of it leak by averaging
the signal-to-noise ratios across individual tensors in the multitensor.

"One exception: we always include the example dimension in the subset of dimensions.
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over these subsets of dimensions, and concatenates all the softmaxxed results together in the channel
dimension. The output dimension varies across different tensors in the multitensor, depending on
their tensor rank. A pre-norm is applied, and per-tensor projections map to and from the residual
stream. The layer has input channel dimension of 2.

D.4 DIRECTIONAL CUMMAX/SHIFT LAYER

The directional cummax and shift layers allow the network to perform the non-equivariant cummax
and shift operations in an equivariant way, namely by applying the operations once per direction, and
only letting the output be influenced by the results once the directions are aggregated back together (by
the multitensor communication layer). These layers are the sole reason we included the direction
dimension when defining a multitensor: to store the results of directional layers and operate on each
individually. Of course, this means when we apply a spatial equivariance transformation, we must
also permute the indices of the direction dimension accordingly, which can get complicated
sometimes.

The directional cummax layer takes the eight indices of the direction dimension, treats each slice as
corresponding to one direction (4 cardinal, 4 diagonal), performs a cumulative max in the respective
direction for each slice, does it in the opposite direction for half the channels, and stacks the slices
back together in the direction dimension. An illustration is in Figure The slices are rescaled to
have min —1 and max 1 before applying the cumulative max.

The directional shift layer does the same thing, but for shifting the grid by one pixel instead of
applying the cumulative max, and without the rescaling.

Some details:

* Per-tensor projections map to and from the residual stream, with pre-norm.
* Input channel dimension is 4.

* These layers are only applied to the [example, color, direction, height, width,
channel] and [example, direction, height, width, channel] tensors in the input
multitensor.
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Figure 10: The directional cummax layer takes a directional tensor, splits it along the direction axis,
and applies a cumulative max in a different direction for each direction slice. This operation helps
CompressARC transport information across long distances in the puzzle grid.

D.5 DIRECTIONAL COMMUNICATION LAYER
By default, the network is equivariant to permutations of the eight directions, but we only want

symmetry up to rotations and flips. So, this layer provides a way to send information between two
slices in the direction dimension, depending on the angular difference in the two directions. This
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layer defines a separate linear map to be used for each of the 64 possible combinations of angles,
but the weights of the linear maps are minimally tied such that the directional communication layer
is equivariant to reflections and rotations. This gets complicated really fast, since the direction
dimension’s indices also permute when equivariance transformations are applied. Every direction
slice in a tensor accumulates its 8 messages, and adds the results togetherﬂ

For this layer, there are per-tensor projections to and from the residual stream with pre-norm. The
input channel dimension is 2.

D.6 NONLINEAR LAYER

We use a SiLU nonlinearity with channel dimension 16, surrounded by per-tensor projections with
pre-norm.

D.7 NORMALIZATION LAYER

We normalize all the tensors in the multitensor, using means and variances computed across all
dimensions except the channel dimension. Normalization as used within other layers also generally
operates this way.

D.8 LINEAR HEADS

We must take the final multitensor, and convert it to the format of an ARC-AGI puzzle. More
specifically, we must convert the multitensor into a distribution over ARC-AGI puzzles, so that we
can compute the log-likelihood of the observed grids in the puzzle.

Multitensor
solution colors tensor row mask tensor  column mask tensor
[example, color, height, width] [example, height] [example, width]

. (one example) (one example)
(one example) |

L -

Reconstruction
(one example)

Figure 11: The linear head layer takes the final multitensor of the residual stream and reads a
[example, color, height, width, channel] tensor to be interpreted as color logits, and a
[example, height, channel] tensor and a [example, width, channel] tensor to serve as
shape masks.

The colors of every pixel for every example for both input and output, have logits defined by the
[example, color, height, width, channel] tensor, with the channel dimension linearly
mapped down to a size of 2, representing the input and output gridsﬂ The log-likelihood is given by
the cross-entropy, with sum reduction across all the grids.

8We also multiply the results by coefficients depending on the angle: 1 for 0 degrees and 180 degrees, 0.2 for
45 degrees and 135 degrees, and 0.4 for 90 degrees.

The linear map is initialized to be identical for both the input and output grid, but isn’t fixed this way during
learning. Sometimes this empirically helps with problems of inconsistent input vs output grid shapes. The
bias on this linear map is multiplied by 100 before usage, otherwise it doesn’t seem to be learned fast enough
empirically. This isn’t done for the shape tensors described by the following paragraph though.
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For grids of non-constant shape, the [example, height, channel] and [example, width,
channel] tensors are used to create distributions over possible contiguous rectangular slices of each
grid of colors, as shown in Figure [I1] Again, the channel dimension is mapped down to a size of
2 for input and output grids. For every grid, we have a vector of size [width] and a vector of size
[height]. The log likelihood of every slice of the vector is taken to be the sum of the values within
the slice, minus the values outside the slice. The log likelihoods for all the possible slices are then
normalized to have total probability one, and the colors for every slice are given by the color logits
defined in the previous paragraph.

With the puzzle distribution now defined, we can now evaluate the log-likelihood of the observed
target puzzle, to use as the reconstruction error@]

E OTHER ARCHITECTURAL DETAILS

E.1 RULES FOR LEGAL MULTITENSORS

1. At least one non-example dimension must be included. Examples are not special for any reason
not having to do with colors, directions, rows, and columns.

2. If the width or height dimension is included, the example dimension should also be included.
Positions are intrinsic to grids, which are indexed by the example dimension. Without a grid it
doesn’t make as much sense to talk about positions.

E.2 WEIGHT TYING FOR REFLECTION/ROTATION SYMMETRY

When applying a different linear layer to every tensor in a multitensor, we have a linear layer for
tensors having a width but not height dimension, and another linear layer for tensors having a height
but not width dimension. Whenever this is the case, we tie the weights together in order to preserve
the whole network’s equivariance to diagonal reflections and 90 degree rotations, which swap the
width and height dimensions.

The softmax layer is not completely symmetrized because different indices of the output correspond
to different combinations of dimension to softmax over. Tying the weights properly would be a bit
complicated and time consuming for the performance improvement we expect, so we did not do this.

E.3 TRAINING/INITIALIZATION

We train for 2000 iterations using Adam, with learning rate 0.01, 5; of 0.5, and 35 of 0.9. Weights
are essentially all initialized with Xavier normal initialization.

F PREPROCESSING

F.1 OUTPUT SHAPE DETERMINATION

The raw data consists of grids of various shapes, while the neural network operates on grids of
constant shape. Most of the preprocessing that we do is aimed towards this shape inconsistency
problem.

Before doing any training, we determine whether the given ARC-AGI puzzle follows three possible
shape consistency rules:

1. The outputs in a given ARC-AGI puzzle are always the same shape as corresponding inputs.

2. All the inputs in the given ARC-AGI puzzle are the same shape.

!0There are multiple slices of the same shape that result in the correct puzzle to be decoded. We sum together
the probabilities of getting any of the slices by applying a logsumexp to the log probabilities. But, we found
empirically that training prematurely collapses onto one particular slice. So, we pre-multiply and post-divide
the log probabilities by a coefficient when applying the logsumexp. The coefficient starts at 0.1 and increases
exponentially to 1 over the first 100 iterations of training. We also pre-multiply the masks by the square of this
coefficient as well, to ensure they are not able to strongly concentrate on one slice too early in training.
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3. All the outputs in the given ARC-AGI puzzle are the same shape.

Based on rules 1 and 3, we try to predict the shape of held-out outputs, prioritizing rule 1 over rule
3. If either rule holds, we force the postprocessing step to only consider the predicted shape by
overwriting the masks produced by the linear head layer. If neither rule holds, we make a temporary
prediction of the largest width and height out of the grids in the given ARC-AGI puzzle, and we allow
the masks to predict shapes that are smaller than that.

The largest width and height that is given or predicted, are used as the size of the multitensor’s width
and height dimensions.

The predicted shapes are also used as masks when performing the multitensor communication,
directional communication and directional cummax/shift layers. We did not apply masks for the
other layers because of time constraints and because we do not believe it will provide for much of a
performance improvement

F.2 NUMBER OF COLORS

We notice that in almost all ARC-AGI puzzles, colors that are not present in the puzzle are not present
in the true answers. Hence, any colors that do not appear in the puzzle are not given an index in the
color dimension of the multitensor.

In addition, black is treated as a special color that is never included in the multitensor, since it
normally represents the background in many puzzles. When performing color classification, a tensor
of zeros is appended to the color dimension after applying the linear head, to represent logits for the
black color.

G POSTPROCESSING

Since the generated answer grid is stochastic from randomness in z, we save the answer grids
throughout training, and roughly speaking, we choose the most frequently occuring one as our
denoised final prediction. This is complicated by the variable shape grids present in some puzzles.

Generally, when we sample answers from the network by taking the logits of the [example, color,
height, width, channel] tensor and argmaxxing over the color dimension, we find that the
grids are noisy and will often have the wrong colors for several random pixels. We developed several
methods for removing this noise:

1. Find the most commonly sampled answer.

2. Construct an exponential moving average of the output color logits before taking the softmax to
produce probabilities. Also construct an exponential moving average of the masks.

3. Construct an exponential moving average of the output color probabilities after taking the softmax.
Also construct an exponential moving average of the masks.

When applying these techniques, we always take the slice of highest probability given the mask, and
then we take the colors of highest probability afterwards.

We explored several different rules for when to select which method, and arrived at a combination of
1 and 2 with a few modifications:

* At every iteration, count up the sampled answer, as well as the exponential moving average answer

(decay = 0.97).

» If before 150 iterations of training, then downweight the answer by a factor of e~ 10, (Effectively,
don’t count the answer.)

* If the answer is from the exponential moving average as opposed to the sample, then downweight
the answer by a factor of e .

""The two masks for the input and output are combined together to make one mask for use in these operations,
since the channel dimension in these operations don’t necessarily correspond to the input and output grids.
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» Downweight the answer by a factor of e~ 10*uncer@inty - ywhere uncertainty is the average (across
pixels) negative log probability assigned to the top color of every pixel.

H EMPIRICALLY OBSERVED ABILITIES AND DISABILITIES OF
COMPRESSARC

sample sample average guess 1 guess 2

(b) CompressARC'’s solution to puzzle 28e73¢20

.
.

4

(a) Puzzle 28e73c20

Figure 12: Puzzle 28¢73c20, and CompressARC’s solution to it.

A short list of abilities that can be performed by CompressARC includes:

* Assigning individual colors to individual procedures (see puzzle [0ca9ddb6)

* Infilling (see puzzle [0dfd9992)

* Cropping (see puzzle[Ic786137)

» Connecting dots with lines, including 45 degree diagonal lines (see puzzle [Tf876c06)
* Same color detection (see puzzle [[f876c06)

* Identifying pixel adjacencies (see puzzle @2a50994)

* Assigning individual colors to individual examples (see puzzle 3bd67248)

* Identifying parts of a shape (see puzzle[025d127b)
* Translation by short distances (see puzzle [025d127b)

We believe these abilities to be individually endowed by select layers in the architecture, which we
designed specifically for the purpose of conferring those abilities to CompressARC.

A short list of abilities that cannot be performed by CompressARC includes:

* Assigning two colors to each other (see puzzle [0d3d703¢)

* Repeating an operation in series many times (see puzzle[0a938d79)

+ Counting/numbers (see puzzle[ce9e57f2)

* Translation, rotation, reflections, rescaling, image duplication (see puzzles [0e206a2¢} [5ad4T10b]
and PhceeTHY)

* Detecting topological properties such as connectivity (see puzzle [7b6016b9)

* Planning, simulating the behavior of an agent (see puzzle 2dd70a%a))
* Long range extensions of patterns (see puzzle 28e73¢c20 above)
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I BASELINES

The U-Net baseline in Table[T] was created to observe the performance of a more standard approach
when subject to the same constraints of CompressARC, namely the avoidance of any training before
inference time, and the sole use of the test puzzle as training data during inference time.

The training algorithm for the baseline consists of feeding each input grid into the U-Net and using
the U-Net output to classify the pixel color of the output grid. Puzzles where the input grid and output
grid did not match shape were skipped and assumed to receive a score of zero. The most common
two output grids occurring in the second half of the 10000 steps of training were used as the two
solution guesses.

We did not change the width or height of the grids in order to fit the ARC-AGI grids into the U-Net.
The U-Net’s BatchNorm was replaced with a GroupNorm, and the middle pooling/upsampling layers
were skipped if the activation grids were too small to be pooled anymore.

We experimented with applying a random augmentation transformation to the input grids and reversing
the transformation on the output before computing the loss and/or ensembling predictions, but we
discarded this idea due to worse performance on the training set (2.5% without augmentations, 1%
with augmentations).

J PuUzzLE SOLVE ACCURACY TABLES

See Tables 4] and [5] for numerically reported puzzle solve accuracies on the whole dataset.

Table 4: CompressARC’s puzzle solve accuracy on the training set as a function of the number of
steps of inference time learning it is given, for various numbers of allowed guesses (pass@n). The
official benchmark is reported with 2 allowed guesses, which is why we report 20% on the evaluation
set. Total training set solve time is reported for an NVIDIA RTX 4070 GPU by solving one puzzle at
a time in a sequence.

Training Iteration Time Pass@1 Pass@2 Pass@5 Pass@10 Pass@100 Pass@1000

100 6h 1.00% 2.25% 3.50% 4.75% 6.75% 6.75%
200 13h  11.50% 14.25% 16.50% 18.25% 23.25% 23.50%
300 19h  18.50% 21.25% 23.50%  26.75% 31.50% 32.50%
400 26h  21.00% 25.00% 28.75%  31.00% 36.00% 37.50%
500 32h  23.00% 27.50% 31.50%  33.50% 39.25% 40.75%
750 49h  28.00% 30.50% 34.00%  36.25% 42.75% 44.50%
1000 65h  28.00% 31.75% 35.50%  37.75% 43.75% 46.50%
1250 81h  29.00% 3225% 37.00%  39.25% 45.50% 49.25%
1500 97h  29.50% 33.00% 38.25%  40.75% 46.75% 51.75%
2000 130h  30.25% 34.75% 3825%  41.50% 48.50% 52.75%

K How 1O IMPROVE OUR WORK

At the time of release of CompressARC, there were several ideas which we thought of trying or
attempted at some point, but didn’t manage to get working for one reason or another. Some ideas we
still believe in, but didn’t use, are listed below.

K.1 JOINT COMPRESSION VIA WEIGHT SHARING BETWEEN PUZZLES

Template Algorithm [I)includes a hard-coded value of 6 for every single puzzle. We might be able to
further shorten the template program length by sharing a single € between all the puzzles, enhancing
the compression and creating more correct puzzle solutions. Algorithm [2] would have to be changed
accordingly.

To implement this, we would most likely explore strategies like:
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Table 5: CompressARC’s puzzle solve accuracy on the evaluation set, reported the same way as in
Table [d]

Training Iteration Time Pass@1l Pass@2 Pass@5 Pass@10 Pass@100 Pass@1000

100 7h 0.75% 1.25% 2.25% 2.50% 3.00% 3.00%
200 14 h 5.00% 6.00% 7.00% 7.75% 12.00% 12.25%
300 21h  10.00% 10.75% 12.25% 13.25% 15.50% 16.25%
400 28h  11.75% 13.75% 16.00%  17.00% 19.75% 20.00%
500 34h 13.50% 15.00% 17.75% 19.25% 20.50% 21.50%
750 52h  1550% 17.715% 19.75%  21.50% 22.75% 25.50%
1000 69h 16.75% 19.25% 21.75%  23.00% 26.00% 28.75%
1250 86h 17.00% 20.75% 23.00%  24.50% 28.25% 30.75%
1500 103h 1825% 21.50% 24.25%  25.50% 29.50% 31.75%
2000 138h  18.50% 20.00% 24.25%  26.00% 31.25% 33.75%

 Using the same network weights for all puzzles, and training for puzzles in parallel. Each puzzle
gets assigned some perturbation to the weights, that is constrained in some way, e.g., LORA (Hu
et al.,[2021).

* Learning a “puzzle embedding” for every puzzle that is a high dimensional vector (more than 16
dim, less than 256 dim), and learning a linear mapping from puzzle embeddings to weights for our
network. This mapping serves as a basic hypernetwork, i.e., a neural network that outputs weights
for another neural network (Chauhan et al.| [2024).

Unfortunately, testing this would require changing CompressARC (Algorithm [3) to run all puzzles
in parallel rather than one at a time in series. This would slow down the research iteration process,
which is why we did not explore this option.

K.2 CONVOLUTION-LIKE LAYERS FOR SHAPE COPYING TASKS

This improvement is more ARC-AGI-specific and may have less to do with AGI in our view. Many
ARC-AGI-1 puzzles can be seen to involve copying shapes from one place to another, and our
network has no inductive biases for such an operation. An operation which is capable of copying
shapes onto multiple locations is the convolution. With one grid storing the shape and another with
pixels activated at locations to copy to, convolving the two grids will produce another grid with the
shape copied to the designated locations.

There are several issues with introducing a convolutional operation for the network to use. Ideally,
we would read two grids via projection from the residual stream, convolve them, and write it back in
via another projection, with norms in the right places and such. Ignoring the fact that the grid size
changes during convolution (can be solved with two parallel networks using different grid sizes), the
bigger problem is that convolutions tend to amplify noise in the grids much more than the sparse
signals, so their inductive bias is not good for shape copying. We can try to apply a softmax to one
or both of the grids to reduce the noise (and to draw an interesting connection to attention), but we
didn’t find any success.

The last idea that we were tried before discarding the idea was to modify the functional form of the
convolution:

(fxg)(@) =Y flz—y)gy)

to a tropical convolution (Fan et al.,[2021), which we found to work well on toy puzzles, but not well
enough for ARC-AGI-1 training puzzles (which is why we discarded this idea):

(fxg)(x) = mng(x —y) +9(y)

27



Convolutions, when repeated with some grids flipped by 180 degrees, tend to create high activations
at the center pixel, so sometimes it is important to zero out the center pixel to preserve the signal.

K.3 KL FLOOR FOR POSTERIOR COLLAPSE

We noticed during testing that crucial posterior tensors whose KL fell to zero during learning would
never make a recovery and play their role in the encoding, just as in the phenomenon of mode collapse
in variational autoencoders (van den Oord et al.| | 2018)). We believe that the KL divergence may upper
bound the information content of the gradient training signal for parts of the network that process the
encoded information. Thus, when a tensor in z falls to zero KL, the network stops learning to use its
encoded information, and the KL is no longer incentivized to recover. If we artificially hold the KL
above zero for an extended period of training, then the network may learn to make use the tensor’s
information, incentivizing the KL to stay above zero when released again.

We implemented a mechanism to keep the KL above a minimum threshold so that the network always
learns to use that information, but we do not believe the network learns fast enough for this to be
useful, as we have never seen a tensor recover before. Therefore, it might be useful to explore
different ways to schedule this KL floor to start high and decay to zero, to allow learning when the
KL is forced to be high, and to leave the KL unaffected later on in learning. This might cause training
results to be more consistent across runs.

K.4 REGULARIZATION

In template Algorithm[I] we do not compress 6 to reduce the number of bits it takes up. If we were to
compress 6 as well, this would produce an extra KL term to the loss in CompressARC (Algorithm
[3), and the KL term would simplify to an L2 regularization on ¢ under certain reasonable limits. It
is somewhat reckless for us to neglect compressing 6 in our work due to the sheer number of bits ¢
contributes, and making this change may improve our results.

L  ADDITIONAL DETAILS ABOUT THE ARC-AGI BENCHMARK

Hidden Rules: For every puzzle, there is a hidden rule that maps each input grid to each output
grid. There are 400 training puzzles and they are easier to solve than the 400 evaluation puzzles. The
training set is intended to help teach your system the following general themes which underlie the
hidden rules in the evaluation set:

* Objectness: Objects persist and cannot appear or disappear without reason. Objects can interact or
not depending on the circumstances.

* Goal-directedness: Objects can be animate or inanimate. Some objects are “agents” - they have
intentions and they pursue goals.

* Numbers & counting: Objects can be counted or sorted by their shape, appearance, or movement
using basic mathematics like addition, subtraction, and comparison.

* Basic geometry & topology: Objects can be shapes like rectangles, triangles, and circles which
can be mirrored, rotated, translated, deformed, combined, repeated, etc. Differences in distances
can be detected.

The puzzles are designed so that humans can reasonably find the answer, but machines should
have more difficulty. The average human can solve 76.2% of the training set, and a human expert
can solve 98.5% (LeGris et al., [2024).

Scoring: You are given some number of examples of input-to-output mappings, and you get two
guesses to guess the output grid(s) for a given input grid, without being told the hidden rule. One
guess consists of guessing the width and height of the output grid(s), as well as all the pixel colors
within, and if each of these is correct, then that guess succeeds. If either guess succeeds, then you
score 1 for that puzzle, else you score 0. Some puzzles have more than one input/output pair that you
have to guess, in which case the score for that puzzle may be in between.

Scoring Environment: The competitions launched by the ARC Prize Foundation have been restricted
to 12 hours of compute per solution submission, in a constrained environment with no internet access.
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This is where a hidden semi-private evaluation set is used to score solutions. The scores we report are
on the public evaluation set, which is of the same difficulty as the semi-private evaluation set, which
we had no access to when we performed this work.

M ADDITIONAL CASE STUDIES
Below, we show two additional puzzles and a dissection of CompressARC’s solution to them.

M.1 CASE STUDY: BOUNDING BOX

Puzzle 6d75e8bb is part of the training split, see Figure [I3]
kel -
E-’ ?

Figure 13: Bounding Box: Puzzle 6d75e8bb from the training split.

M.1.1 WATCHING THE NETWORK LEARN: BOUNDING B0OX

Human Solution: We first realize that the input is red and black, and the output is also red and black,
but some of the black pixels are replaced by light blue pixels. We see that the red shape remains
unaffected. We notice that the light blue box surrounds the red shape, and finally that it is the smallest
possible surrounding box that contains the red shape. At this point, we copy the input over to the
answer grid, then we figure out the horizontal and vertical extent of the red shape, and color all of the
non-red pixels within that extent as light blue.

CompressARC Solution: See Table|[6]

M.1.2 SOLUTION ANALYSIS: BOUNDING BOX

Figure [I4]shows the amount of contained information in every tensor within z.

All the tensors in z fall to zero information content during training, except for three tensors. From
600-1000 steps, we see the [example, height, width, channel] tensor suffer a massive drop in
information content, with no change in the outputted answer. We believe it was being used to identify
the light blue pixels in the input, but this information then got memorized by the nonlinear portions
of the network, using the [example, height, channel] and [example, width, channel] as
positional encodings.

Figure 5] shows the average output of the decoding layer for these tensors to see what information is
stored there.

M.2 CASE STUDY: CENTER CROSS

Puzzle 41e4d17e is part of the training split, see Figure
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Table 6: CompressARC learning the solution for Bounding Box, over time.

Learning
steps

What is CompressARC doing?

Sampled solution guess

50

100

150

The average of sampled outputs shows that
light blue pixels in the input are generally pre-
served in the output. However, black pixels in
the input are haphazardly and randomly col-
ored light blue and red. CompressARC does
not seem to know that the colored input/output
pixels lie within some kind of bounding box,
or that the bounding box is the same for the
input and output grids.

The average of sampled outputs shows red
pixels confined to an imaginary rectangle sur-
rounding the light blue pixels. CompressARC
seems to have perceived that other examples
use a common bounding box for the input and
output pixels, but is not completely sure about
where the boundary lies and what colors go in-
side the box in the output. Nevertheless, guess
2 (the second most frequently sampled output)
shows that the correct answer is already being
sampled quite often now.

The average of sampled outputs shows almost
all of the pixels in the imaginary bounding
box to be colored red. CompressARC has
figured out the answer, and further training
only refines the answer.

sample

guess 1

sample average

guess 2

u

sample

guess 1

sample average

guess 2

sample

guess 1

sample average

guess 2
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Figure 14: Breaking down the KL loss during training into contributions from each individual shaped
tensor in the multitensor z.

component 0, strength = 0.3220091760158539
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component 0, strength = 0.2844579815864563
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height
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(a) [example, height, channel] tensor. The
first principal component is 771 times stronger than
the second principal component. A brighter pixel
indicates a row with more light blue pixels. It
is unclear how CompressARC knows where the
borders of the bounding box are.

(b) [example, width, channel] tensor. The
first principal component is 550 times stronger than
the second principal component. A darker pixel
indicates a column with more light blue pixels.
It is unclear how CompressARC knows where the
borders of the bounding box are.

component 0, strength = 1.1545500755310059

red

color

(c) [color,channel] tensor. This tensor serves
to distinguish the roles of the two colors apart.

Figure 15: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

Human Solution: We first notice that the input consists of blue “bubble” shapes (really they are
just squares, but the fact that they’re blue reminds us of bubbles) on a light blue background and the
output has the same. But in the output, there are now magenta rays emanating from the center of each
bubble. We copy the input over to the answer grid, and then draw magenta rays starting from the
center of each bubble out to the edge in every cardinal direction. At this point, we submit our answer
and find that it is wrong, and we notice that in the given demonstrations, the blue bubble color is
drawn on top of the magenta rays, and we have drawn the rays on top of the bubbles instead. So, we
pick up the blue color and correct each point where a ray pierces a bubble, back to blue.
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(b) CompressARC'’s solution.

5

(a) The puzzle.

Figure 16: Center Cross: Puzzle 41e4d17e from the training split.

CompressARC Solution: We don’t show CompressARC’s solution evolving over time because
we think it is uninteresting; instead will describe. We don’t see much change in CompressARC’s
answer over time during learning. It starts by copying over the input grid, and at some point, magenta
rows and columns start to appear, and they slowly settle on the correct positions. At no point does
CompressARC mistakenly draw the rays on top of the bubbles; it has always had the order correct.

M.2.1 SOLUTION ANALYSIS: CENTER CROSS

Figure[T7)shows another plot of the amount of information in every tensor in z. The only surviving
tensors are the [color, channel] and [example, height, width, channel] tensors, which
are interpreted in Figure[T§]

T T
104 —— {color, channel)
—— ({(example, height, width, channel}

=

10°

|
. j
L' \'MWW‘J 1““i'\-\‘ A‘!\IA‘F

10% 3

KL contribution
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I
T T T T T T
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step

Figure 17: Breaking down the KL loss during training into contributions from each individual shaped
tensor in the multitensor z.
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component 0, strength = 0.019098609685897827

example 0 example 1 example 2
0 0

height
height
height

o] 10 0 10 0 10
width width width

(a) [example, height, width, channel]
tensor. The top principal component is 2496
times stronger than the second principal compo-
nent. This tensor codes for the centers of the
bubbles. In the KL contribution plot, we can see
that the information content of this tensor is de-
creasing over time. Likely, CompressARC is in the
process of eliminating the plus shaped representa-
tion, and replacing it with a pixel instead, which
takes fewer bits.

component 0, strength = 1.2195433378219604

blue magenta
colar

component 1, strength = 0.9535569548606873

blue magenta
color

(b) [color,channel] tensor. This tensor just
serves to distinguish the individual roles of the
colors in the puzzle.

Figure 18: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

N LiSsT OF MENTIONED ARC-AGI-1 PUzZLES

See Table[7] below.
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Puzzle 5ad4f10b Puzzle 6d75e8bb Puzzle 766016b9
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Puzzle ce9e57f2
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Table 7: List of Mentioned ARC-AGI=1 Puzzles. All these puzzles are part of the training split.

O CODE

Code for this project is provided at https://github.com/iliao2345/CompressARC
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B SR ARRE (LLM) BUSHEE, KNEEN
ZIRr " BE T IR

ZiE: iSRS Al IR R RTRAIREEE

B, XSRT7T—MHENEESR —REIAZRIEET
KPRV, MEFRTREEE, RILEFATRRS
RIAXEISMHFEEHNN DB,



o RWM:. HIEWRAE A (Fluid Intelligence) R &HiF
HIRAE ELEHFE TUHANIR -

o ZFR: 1217 = #IE
o BFWINLRIMERUERS ( Zero-pretraining )

o B MRBZERBME, FTEETANREHESE LFm
%, HEERRRMRMEIERR]E,

o HE: NEB 7™M (70057) BHEVMREEIIHTRES
AYMERE o

o B35 ERATHERE N LUBINERISH (d0EY3. 4
) REWE, MIMVKRETIZSHNFZETIHER],

o AR FEWUE > BN,

T—mfMeg: FETFRBITEENFE 2T, FANTH ARC-AGI WA
AESHES (AIRENRE), URBERTDZ0FIR"9N, AEREE
Fa (HAREEHA) KEERXLEN T,

BET LU RAKEARIRES 2 TING? URE:
ZRXEFHR = — 1 EX+—1PHERX=FA Custom Gem
2 W BOEIRSEIEEER

1. P ERF

(ZEm) . WEEHEARE, Spelke FA (26) FAZEZOH
IRET TR, XEMRARE) I EFEFEERH @EENy 2
A1) RN, FEREAXEEH-ERN. ARC-AGI 2QHill%kES



SEILNNE AR IR ARC-AGI ESFIEFTEZ AR

¥,

1.1 BUBEMIRR 4% ARC Prize 2024 2 J5, I{17E 2025 FE# L%
7 ARC-AGI-2, ARC-AGI-2 frR¥F 75 ARC-AGI-1 tHRIHESEIL
MizZEN, FNMATEEESZUEENESRTES, HinE
T ESHENST . ARC-AGI-2 HEARN—HALBIENES
HRY, PA=NFEENFE: - AEI%ES (4001, M ARC-
AGI-1 §\): EERTESEAHFATFEIZORIREE, « FFh
BEES (1201) : BFEEHRENFEHTEED. BAX
DA, BEXLEESERELAT L AP, ALEE—TEHMIRX
. « FABWMEES (1201) : BFREARZFITFSNKIE. Z&ES
EREEN, B EAEFEERR,

B 1% (BF: BR7TRAESHRANEE . Ex.1 N
tH, Ex2 WNRE, Ex.3 BNREL, MBS NMHEE,)
El 1: ARC-AGI 5l |RATHBIDE (SOTA) NEFFABEFFA
BEESE LIRS, BRSNS HEE 52X,

2. REFEEIE
BETFE 2 ifOARR, IRESRWT:

ARCIFENBE MR = AR OSTRANRHEE + =R BIERE RN
+ IFE ST AR i — HHE At R X P15
SFAERIFAMIRA:

o  AFBOVFLIEHIIRFEE ( Core Knowledge Priors )

o B Al FTEMBFEFINAE R, MNAFIEM
AL ERIARIAFESS

o iZiB. 5|H Spelke BNMARIEL, MAIEEM. B
I MEREFER 4 5T LERNE&NERE . ARC



ZENEETXERENHE, MIFRERIHFES,

o AI. HEERERAEREEUTXLEEER. IFESHE
MFHEERZ £

o ZAME: BENRERA'KE (MIFZAREIE) .
o =ERBWUIBPREZEM ( Three-Tier Dataset Split)
o« BM: ATXHA9B 52, B isiTHIE RSB

BIRE M
o HUE:
e Public (400): ##f, RFE, 2AFYE, BFiL AR
R ARRRES,

e Semi-Private (120): #Ri\Z, RAFERIEEET AP
BT (Leakage Risk), VAT B,

o Private (120): &%, £XR%E, YERS, BTE
Bt

o ZiB: HAMTEEREMXKRIEMEE (Private Set) 1§
ﬁ: j—ﬁgiﬁﬁﬁ'&ﬂ#%?*ﬁigy ﬁﬁTIElE{IT:l?Ko

o ZFFR: HEBANEM = ZHBIESE,
o BAFTEIHHIRAE ( No Specialized World Knowledge )
o BM:. FEES. BHE. XUERXIEAIRNFH.

o 1. REBPFCFEBHEFLHIES/RES. XFER
ARC FUAANEREE S (HEREND) IR, X3l
TNEREES GHRfES) BIFFHMR (30 MMLU).

o AERR: FHNA = FREEM,
o - BURMIRRIPLIN ( Data Leakage Risk )

o B EEEMNA, EziRd 2RpvEiEERRT sER A
REIEMRHY GRS



o IR HEWSEHEERFAEESEFTEIEH L AP it
BRI CRi2T) , RUMEERZINE RS R R FAR”

PN
Ro

o ! MCIZEERRE&E—ER .

T—mfg: % 3 TU¥ET ARC 2025 EEMEMRLEE, BiEK
B FARY D AN MEBRZIOR AR (G0NAEIIZR. SEEUEE
o RITEBIAES Al EXEEES FTHNRMES,

iy cs

EFRAEFER = —IFERX+—1FHLX =R Custom Gem

P 3. ABEZKZWIIFS 2025 THRLER

1. PXXERE

(EFLJ) ARC-AGI EEZH—EBHHEIZE, TI1X Al RFAXER
B, BXAEKREETSZ. =V ARC-AGI-1 FAFIHLESH
mAMIE, P3FSD 97% F 98%, FHFELERRERT 100% HE
$Fo ¥F ARC-AGI-2, ZdimEMIiE, 100% HNESEHEE D
ME (HEZ) RKEEBELARWRIIIFERNAERER, 8MES
B 2310 AZi. BINPUALRARERHHILT ARC-AGI-2 Y
FRBRESEHE AR RENTINEIER T8 LR R,

2 ARC Prize 2025 45 2.1 TFE#HE ARC Prize 2025 M 2025 £
3 B 26 H#F4:%E 11 B 3 H. Kaggle THHE 1,455 SHIBAIERS
T 15,154 NBEIES, MIES ARC Prize 2024 M. e RHES
7 ARC-AGI-2 FABEIES LiAEI THEY SOTA (FRILiHKF),
7 24%, IHEBERAEREMES 0.20 T, EXRXEBEEKE



E, £F 90 FIEURER, BT 2024 £ 47 B, BHTIRXEMA
S5, BRNEN=ZRIAREZIMEMT 5 MEIMNITEE, HRE
7 8 NMAIMNIRELRER. FiE ARC Prize 2025 SR A EMIEIEY
EFFR, BJTE arcprize.org E3REY,

2.2 &&E4% (Top Scores)

& 1. ARC Prize 2025 a0 %FRE
e 1% ($25Kk): NVARC - 24.03%
e £ 2% ($10k): the ARChitects - 16.53%
e 5538 ($5k): MindsAl - 12.64%
o 58473 ($5K): Lonnie - 6.67%

« %54 ($5k): G. Barbadillo - 6.53%

Kaggle eI =R EBR 7T MiRBH)IZ (Test-Time Training,
TTT) FSERKRANEZEHD, % 1% NVARC (24.03%): Z{Fm
EEILTE 2024 &£ ARChitects IJRREEam (IR 7 BTI)IZR) AYESL
t, HAEEAEREBIBLER (synthetic data generation) Kigs)
IERMERE, 28 2 & the ARChitects (16.53%): —NE&®)IBFK
1L (recursive self-refinement) FEFIAHBIIFLHHIRY 2D =X
MY #ESEE (masked-diffusion language model), %fZ
R RS F I RIHEIE 2 5 E FIRFTASEAMEDR, KARB0H T 1%
HIBA 2024 EMBEEVIARS. P 3 37 MindsAl (12.64%): —NETL
EURMKETIIEEE, 4a 7T MARRE,. GaEm

(augmentation ensembles) . 73i82§ dropout FIFTFABIFINIZRE:
AN, £ ARC-AGI-2 LFETEREBRF NI, ARC Prize [uf
R T X E =R IRRERIAR I

2. REFEIE
BETFE 3 mOASR, I—RESRWT:



ARC2025FFME = ALXEHRETEHM(100%)— AHEIESOTA(24%)
=MRENER(TTT)ER + EREIEZ L 32 IH VR + T R

BI5|IN

FAEFRFMNA:
o AXERTHM (100%)

B WIAESHafRM, INRALZBREEM, FBIED
BHET.

#iR: ARC-AGI-2 £ I™H&IIE, @A (JFEXR) 7
TGRSR FREARR 100% BIES o

AsFR: EBRT ARC BERIEEAIARIEES, MiMSER

ok
BEo

o - AH#IESOTA (24%)

B SHE A SALBENERE,

HiE: REEAREHD, RAHM Al (NVARC) tHHEE
ﬁg;;% 1/4 E"Jﬁga E.EEZKZ:1E\E ($020/taSk) o

2W: XTMEKWIEAE (76%) ERBRAALIEREHE
SRILAYERIE.

o MRXBLIILR (TTT) EF] ( Test-Time Training )

B AT EEITI4BEEIZE, AUEZEiIRI
175 X E TG PE AR,

iZi8: H1=% (NVARC, ARChitects, MindsAl) £k
HMEME R TTT SKAREIF -



o AfR: XMITEEMF LR HEIREARUA—THI
REESHVNEIZRITE WNEEN)

o BHEEIEZW (Synthetic Data)
o B BMAEAEL, #A Al £ KEXMBVERZE)
ZIREY,
o X¥:. TE NVARC WZOMLBET KEERSHEIE
&R, IR T BUEY SRR R n] i _E B

o ERVIMLIRM + T BUREISIAN
o B FEFBEWN, RABGEALBENEREN
Rl
o BIR: F2R5INT R BIESRE N R)IB KA
v, iRt (BERATER) HATEHHE, X2
— MRERIFTRIZR SR

b

o ZfR: HWIER—1EME (Denoising) FIEKRIEHIT

2o

T—IAfs: £ 4 TUSFANE LR (Paper Awards) IR
WiER, XBEEHEMERIBICTEMRIF, HIEXT 7M SHHW
HEMEE @I IR R ISR, LI LR pOFm
Eo

iy cs

EREHER = —IEFERX+—1FXL =R\ Custom Gem



F 4T BXRIMEENATE

1. FEHR
2.3 IE3IM

2R 2: ARC Prize 2025 33k E

HE& RE == FRR

$F1 $50k  A. Jolicoeur-

72 Martineau DEIRZ: MENMKRYRTH
I (Tiny Networks)

$£2 $20k J. Pourcel, C.

=4 Colas, P. BF#ERS RN aRSUH

Oudeyer BEEE . ARC-AGI Z=0IFH
R

%3 $5k . Liao, A. Gu

2 (3 TIZRE ARC-AGI

5il)

%3 $2.5k I Joffe, C.

4 (# Eliasmith BFHRSHEERENRE

) TSR

TE $2.5k  J. Berman
MESHSR)B- 56k . BN
FHEIN{AIE ARC-AGI £5E
I SOTA

TE $2.5k E.Pang
BXMRHIER S



& RE BB el

TE $2.5k  E. Guichard Z
ARC-NCA: BER#HR SHE

BEENABEFRGE

A= RIEXRERE THIATLREE NEIC S LB IBERIFH G &

[e]

%8 1 & Jolicoeur-Martineau: fHELEFIEE (TRM) 2—1 7M

(7007) SHWEMLLEFRE, EFESENERRSIEBETRK
Ao BNFERRELNEMNY (deep supervised refinement) , TRM
IERR T WNRE RS S 893 FHIENLEH TSR, RIS EEIR
FEAERSF I ARC-AGI 148E -

% 2 {4 Pourcel, Colas, fl Oudeyer: SOAR (BT BEhiEF41
NERMHEEF) 2— 1 BRGHNHANEZEFSHIESR, EIRIES
SR RHTHNIE LLM o XA EEARFTEALRITHIREE

BE (DSLs) SififRAEREIESENER T, ¥HIR ARC-AGI-1 B9
FRRBR4EEIRE T 52%, BT T EFRaMASR B EUHAE

[e]

% 3 % Liao M1 Gu: CompressARC 2—METF MDL (B/M#ik
KE) 89, #X2EMREIENHEAEE/RX (neural code
golf) &%, SERETMATIIGHIMBEIENERT, £ ARC-
AGI-1 E3REIT 20-34%, 7£ ARC-AGI-2 LiREIT 4% ., XIMMT{E



xR, ETEAKER/NMUBVANNRARSE (pure test-time
optimization) FJATEARFIBAMETRIIZREVIE R SRR EERE

5o

WXRREBNMIAKIIRITE ARC Prize WISSTENE o

2.4 RERRZ FIN\RIEXAEXT ARC-AGI FRRBISIEAT
228

>H¢

K. Hu &, “ARC-AGI 22— N luta)ga! ~

D. Franzen &, “LLM BUEXKET: €5 ARC M4ae2 AR
ﬁ"

e G. Barbadillo, “RERERSFZIES LN ARC25 Bkbk”

e A DasZ, BHIES: ARC-AGI-2 HATFHSHIEMEEAT
SN

e R.McGovern, “fHE%EYIIER BT IE N

o P.Acuaviva ¥, “EMEBEMREEE: REMWINTIINIZREII
fi#



o J.Cole, M. Osman, “AREIELE) MR K—EEiE: REF
S REUARINEAF ARC”

« |. Sorokin, J. Puget, “ARC-AGI-2 2025 #J NVARC /R %"

2. REFEIE
BETFE 4 TOARR, IBESRWOT:

ARC2025F AR EIFER =MELE)ANMSZ(TRM) + BB H#HVIEF S
(SOAR)+MDLAGMR B (CompressARC) =£ I3z KT
SHHUE
EXERIFHMHEA:
o THBLBYIMRILE(TRM) ( Tiny Recursive Model )
o B HEFAETRAE B¥HE), METEENRE

(RITXRED o
e FUE: NATMEBE (XEUA LM SHENAHSZ—)
TSI T B ERE,

o B BINBEERRESMNBERERDY, H#17Z
AB)AEFH (Refinement) , BINT AR EHRAND
%o
e XR: RE>T E; 118 > 121z,
o BIEHNKERFSH(SOAR) ( Self-Improving Evolutionary
Synthesis )

o B ik ALBIREB CHRBIIMEBEKHAK, MAZE
PEFNESLS 25 ¢



o BiE. BEFE—MENDERRER, WIEER, AEKE
ZHIIEHBIENIE (Search Traces) RIGLAIRELHITGA
(Fine-tuning) o

o RWM:. IEBRTHAIIRIT DSL UHIFEIBS) K
i, ST EBEANEFEHN.

o ZEFR: FIWMMAES (Meta-Learning)o

o MDLAGMIXBS L (CompressARC) ( Minimum Description

Length )

o BH: HERBINRE—SERNEETERERN.
R R 0] @URL 2 SR FE VAR F SR AR B\ b o

o BIE. ZLWMFETINZ (Pretraining) , IBEANMLIKY
E— PRI, 72X MEBFEINGE— N
2R [E 45" EN IR

o XRI:. AT ERKIEENAZTEESZEOHRIIR, ME
0] LUBE E 8B AT N BY BB I,

o K. ik = HIEEL%,

o LFHRFRTKFSEIIE

o i 2025 FRRKIENHFEIER T — MR EEISE
1. EHRERMY, BIEMNEEEN (B3, #k. £
48) thEdiy KIERESE (Scaling Laws) BEX.

T—mME: F 5 TERNRTARZRZNOZO EBE— 4T3
I¥” (Refinement Loop) , HTEEEIX—B W AIFTHLIZERF
BRNETIEREFEIFZE, B AGI #HERNFMSIE,

> — AU
T, HE

FNEER= —PFA+—1FL="FA Custom Gem



250 EBFAKERF (Program Refinement Loops)

1. PCEF

3 BEFAWEIF #E5h 2025 F AGI HEBENZO R ZSHALEIF
(refinement loop) Y2, AE L, AEBEHRERETREES,
IEHIE— N ERR IR R AR AR — P EF AR ARV 2 12,

3.1 AW EIFRIARE AUBIFNRKREIE: - FHEMERIIL
(test-time training) BUREFRIFHE, HARWAKBIRZERETIIIZ
IRBVRIINE, » BINL (Zero-pretraining) SREFIAE, W
TRM, -« FSiEFTRIHXBEAESEFTRPHIHVEFSK
(Evolutionary Program Synthesis), < W8 KB kIR
BOMXBY B4 (Test-time Chain-of-Thought) fifk.

EXLESER, BMNMIKRT 2025 FFRIEENALE: #EERF
BRMNEMINFREFIFE,

3.1.1 # RS XMRARMNEFE1E J. Berman (5) # E. Pang
(22)o Berman NAZEXRB T —MEHNKEERTI A (harmess), BB
RIBSHK ARC R ZEERF. Pang VA EEBEMBIRES,
{B7E Python 121, HISEIE— I EFHRERIESE M.

RT3 EEBSSE T — R RV R, E—ME, BREMBLE
PTFSARIERRRTGTR. FMER, WIEMBITXERFU~ER
mES. XTMEFHHNEMSEEHRT, HEIERNEFEIR
DERFHEENFREIIZR N A IR IR R & 3.

2. REFEEIE
BEF5E 5 IOASR, I—ESRWT:

2025 _AGHZIUE | BE=4HMHE T =(ERFE +BIERR)<ER
R =NEZTERA+ S Tia# it



FAERIFMIHEA:
o HMLIBEIFSETN ( Refinement Loop Paradigm)

o B FEARE—RMIEX"(Zero-shot) , ME“RETIR
F{&1E” (Iterative Correction) o X1&{5 T AR R RARY
HNERFEELE,

o BIE: IREPAMIEHIXZE 2025 EMNFM, RAEFBR—
NMEESHERE f(X) =y, Me— I EE Py =
Refine(P;, F eedback).

o . mhSITREMREGESERE
e EMIRE + BIERR (Exploration + Verification)
B8 HBINE,
#iR: Berman #1 Pang 95 REEE XM EXo
248!
o RZE (Exploration): &E#EBL, FERATESHE
%2R (Candidates),

o IGIE (Verification): WsiB4E, ERNIXAMIELE
USSR MEIE T, RHBEDOEEET .

T TR5EEFE (ARGENWICERBERFIIN
F) o
o NEZTEIFIE (Weight Space Refinement )

o RBM. MENZHNIRIHFES

o IR WRXPREBMWASINE (TTT) A ZFR
k. XEREF"HE X NHEMNERISEL
(Weights) . TEMERRT IRFHELY B S BIRHLEIERE,

o AWM. EMESBERFT, WEHEEIHNHrREMN
FEE T ER IS HRTZIE,



o fIS=TEH ( Symbolic Space Evolution)
 BH: FHENERENEAESEEHN.
o iZiB:. X Berman (BHfAIES) # Pang (Pythonfti3)
HNFZE. XBERREREEXNEEHXE,
 fL=: TR, ZBiEEH, ETIERWK (W Pang BV
SHRE) .

T—DifasE: % 6 TUERNENT SMINLREFEIFZE (Zero-
Pretraining Deep Learning) BIEAAIHI, UKk TRM (fEHE)3
1=E!) #0 CompressARC FIZEM4ATs, FATEBRREF WM
EFFMERNMES HIERE, UNRERIMEIEARE,

iy cs

ZREHR = —PERX+—PERX=FN Custom Gem
B 6 . SMILKREEFEISFESHIRLG

1. PCEF

3.1.2 SIIFREFIHE AN BIFBEERIREFR IEE—
MFAIGERNEM,. 5L, REFIEEEERAMETRE
BN E#HITIIE, UEIE— M ESHENS. XMIIGE
FETAUMEBET RPN SHEL, THIER, SEMWHEA
B, MEHRITEIAERBUARIE Zh&Er MY, £ 2023 54
2024 5F, XMWY B/EMMIRE)IZ (Test-Time Training,
TTT), BPMESEHIERHXHESHRGFEITH—PHE (X—
BEASME—MEFAKREIF) ., EXMTERA, HMENEWIILZL



RAR—MFE T ESHKRERER. MWiXE)IIZZ ARC Prize
2024 (the ARChitects) #2025 (NVARC) &9 BINE. BN
b I B M EISER (ground truth) , 4BMLTEIRTEIIGRHIEE
KBIER, XRMTEFRSHRAZE, BREENEZRMIENSE
B] P 1E,

EIHIN TERTR 7 — MR MIIAN R AN 2T, Bt
MHFEES MKFHRVIIR NS, HUERZESHRFIINEINE
RS ES KEERER . BIF81E Liao FA (19), HEHIEZER
(HRM) (28) #1 Jolicoeur-Martineau (15) XFhF7ERILHFE DR
SERFFE:

1. ZERWMKZERFHEH ARC-AGI MHREREL N,
2. FRE SRRV E ES51)I14RER & & M B,

3.2 FFRRAI 3.2.1 MBELEFIRE (TRM) FELEIESR (TRM) (£
AR 18, Jolicoeur-Martineau (15)) , ZBIZ{EFRHEAMI D EHEIE
IEE (HRM) (28) 2 £, X 7M (7005) S MILEFHIE ARC-
AGI-1 EiXE|T 45% BUMIEERZE, 7£ ARC-AGI-2 EIRET

8%, IHEIEX: WENRIIRE (TRM) A—MHE WLL B I th s
HITMNEZR yo EMBRANNRANRR x. IIEBRAEER y HIBEDS
£z FFih. 7EZ1E Nyyp = 16 MEGHP RSP, ERHBUEEER Yy
o TESUTARMEIX—m=: i) AFRE x. YAIEEy Y
BETEz, @AFMBETE z n X (BFHEIR); AT i) AT
HAIERy MAFBAETE z, EMHER Yy, XMEEFAIEAY
RELRESHERN A XZ ST HHEBTR (BB RE TS
ZHEEAIEEIR) , FEN&IMEGESE,

3.2.2 CompressARC CompressARC (3JEX¥%E 3 &, Liao 1 Gu
(19)) {X{ER 76K (7.673) &%, #1E ARC-AGI-1 iF{h& LiAE|
7 20%, 7EEE NVIDIARTX 4070 GPU L& MFHAIERAEE
20 D, ZBRBFEEE=NEEZERFIE: (&TQ)




2. REFARIR
BET5E 6 IiZOAR, REEFAWT:
SGER =N ER G =R ESNERSERF =7TVS %
JREITRM + 76 KEEELEEE CompressARC
EFXERIFAMIRA:
o BWWINLRSET ( Zero-Pretraining Paradigm)
- BN BANEAREMEEEHRANIR. SHERE
TMERIE, FNFESIATEE HIZIREDR B IREF S,
o FiR: WIKRMFTERNAMEFTINNEZ (Pre-training) ,
WEEE N B ESEEE B —K (Initialized from

scratch) o
o ZFh: BNBIESIEES (In-context Learning RITREFZZS
—WNEREH)

o MIABINENESE ( Test-Time Weight Refinement )
o B BEEIEEAIERIIE,

o 1. FHEEEEFHSHNY = f(x); XERHEERS
RS2, EXFE, REBEIHE FRENE SR
5, HEIXENERESTEARE R 4 R,

o AWM. XMFELHEZMETNERE (Weight Space)
BEEsERR 5 H— M.

o 7TMBHEEYIREBITRM ( Tiny Recursive Model )
 BM: BEE—EMNEENIE, MARERNEN,

o ¥E: X7007E%# (1BLL GPT-4 A2, XZ2iEH
S5KRZMIXF), ENEEREIEARERE,

o IZiH:
o DB BEBRERE (2) M1 FRRE ()o



o 5&ti8 (Update z), BZ (Update y).
o BT (Refine), 1&IF 16 X,

o ZXF: ANERTE (B3 ZRHERISHENT
) o

o 76KEHELEIREICompressARC ( CompressARC )

o B REEN

o BUE: 7.6532¥. XEEZLLRHRIMEMNS (40 LeNet)
/N,

o 23 XENNKZFTBEE—MERN AR, mE— 1t
XTHFRE kA B A R AT FRER R,

e FM: BeE~FMFERNAN&/IMERKE (MDL) #
o

T—msG: £ 7 0EET TRM BZEHE, Hi¥MmeR
CompressARC Wiz LVRIE— /IR KE (MDL), EI1TEE
FRHAELE B IEME, URXMNE 76K SIS ER A
E1ERY.

iy cs

EFRAEHR = 1 FERX+—1FHX =R Custom Gem

F 700 EEERSEIREIRNAY



1. PXXERE

2: TRMZEH (BX: BR7T TRM BAEEN, EERAER
A XXJ@EHR. ZREAN (MLP). BRI (Self-
Attention). II7E5Y3—1 (Add & Norm)o FRAZMEAN x. FIUI y.
BEZE z e, &3 n XERERH z (COHEBEIEIE), ARE
Wy (BCEFN), HEFZNA Ng,p = 16 7Ro)

o FEFIZR: REFENAEKL, RAEWIREIZR,
o FTEELE. —MEREFE—ERESLDIINGEHSE—1E

=

o

o ENZER. R AT2RIEE T,

ZAEBIENRN & IMEMESHERKERIEE, EER/)
ERKE (MDL) RN, Liao #SHINENT 72 B4mIZES (VAE) i
RECEFRIBESIENML, RIUBRASIEZRANIEE /NI ML
BF. WIS ENMEFEIAZEEIZIRAR,

3.3 BRG] IERALRIE T HIMERL Al EERSH, B4
% (Chain-of-Thought) B] IR ARRE A — MG — NBTEIRS RN
S—NEBERTSHEAESIERF.

8 ARC-AGI-1 {155 #4cd1b7b2, Gemini 3 Pro AT 96
18 token FRfERILESS, T Gemini 3 Deep Think £/ T 138,000
1 token, XLERFNESHIEREARMEIHEIE token HE (FK
HNiZF) SESTREZEIBRENEXMY, BMEXITESTHRFH
FEERMVE, XL BHNBALES ERBEIIIMIRENRIEL
I T ESHIA.

NEWRGHER DTSR T BRAETAH: (ETHRES3 L
BXE...)

2. REFEEIE



BFE 7 TNZOARR, RFSFWT:

B RUHIREZH) = MDLE4EIREN (CompressARC)+CoTHARIES
A= (FTmillgr+ EFRiEE + B E TREEAER) + (HE
TokenZ& 1Y Bx B AU EBR)
FERIFAMHEA:

o MDLEZEIEE) (CompressARC)

o B EERAEIE4e. SNR(FEERIERINEY (SFRZMLS
RE) FTEREMBUE, RMIER TSI,

o B EEZR/MERKE (Minimum Description Length)
JR= o

o AW XMFEAFTENZIR, RFEREERAME
LR, IR T ZEETIR B T X HEiE BRRREE
48, AR XLZ0AYI21Z.

o CoTBEARABSERMM ( Chain-of-Thought as

Refinement )

- BE: EEAEERNEEIRBARLERREET—TEA
BEREHIET.

o BH:. B4 Token #ERIEFH—F, Token
%, EFNPEHEZ, BEZRE (Refinement Steps)
PR o

° zkﬁ: BE = BERREE,

o (BTG + BEREE + BETREAER)

o B#: CompressARC HJ“=T"4F o

. ZiE:

o TTISR: FAEKEITIRIZIZ,



o THURE: XEMIZGE TR URIXER LM
-

o TITHNXZEER: FERELHIFHEZE (Tree Search), E
FB#ZFE LRI E T (Gradient Descent) R3I i
iR, MEES,

o ZN[R: IEEERNZIBIHIR D)L NIELMEE MR

o

o (HEETokenZENY B x BERLUIERR)

o BM: BHWAER (40 Gemini 3 Deep Think) H“BS1E
F,

o HUE: FE—EM, HBREINA 96 1> Token, RERBEZIR
LA T 138,000 1 Token,

o B BENKEEESR, BEREETESHNEBR
kB, “BFERUEFMRE" . Token BHEMELSFET#
ERENKRT,

o ZR: BHHMERE (Compute for Intelligence) o

T—BIfig: £ 8 TUSET CompressARC WEGKZEHME (B85

FTEEAT), FRNRITEIRE (40 Claude Opus 4.5 F

QWQ) MWEBRYUEMFER. HRITEEEIIERANEN
(Harnesses) WfAITERIAEEH—FRAREIRI,
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1. FZERIE
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(Bl3x: BT CompressARC BUIFHAERLEN,)
o IFZEZE (Non-Equivariant Layers) :

o ERETIEHIF/IFIFRERER: R4 (Directional
Shift)o

o KETEHFMTFMERER:. SaERRRAE
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o IEEARAMFFERER: S EMIERS (Directional

communication)o

e ZTR (Equivariant Layers): ZiKEi®{E (Multitensor

communication). Softmaxes. SILU B5EKE,

o FTHEIK (Equivariant Base): G&#E (Projections) 5%
ZE7 (residual stream) BIANEIR1E,

o E! z BIFEES. ZMXFEIT—ERET, ENTEEEF
L EEEF,

(EZLELEREERYIETR) . XFTFERBESHNEK,
XRAYFINRR S RO R 2R AE ENL R E 4. ‘R
EEMRES FRREHIRREHY)...”(Claude Opus 4.5) “..&X
RIFREH T REUTM T “BIFHIESE 9 1758 15 FIRIHD
=..."(Claude Opus 4.5) “. . IFEMANTEREPRESR T =
R, BXIASHEHRIIME? " FF, F=MEETE...”(QWQ
32B)

2025 FRAMIEIEIGER! (Gemini 3, Claude Opus 4.5 %)
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o2, MAMUVKITIRESIHIERS, XMAEMARAERE
MR A B B BHES UR AR E &
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&R—1M=EE, EI5IANT— 12 REA L R TER,
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Claude Opus 4.5 BV THEERWE, HEHES Gemini 3 Pro 18
H, BESESHAELIARE (49 $60),

Bal, EIMURINACEGFRISE T, A, REGED
FE RIS ST IR, GEPA (18) #1 DSPy (17) FHARF
REENABRFABEANTEMSH, HITFUHERNACESSH
RABRERZIFEL Al REH AP BiE. B, EIFITRE0E
B, RETFESHERIRLLERIIZE W AF RN BRI
o

2. REFEIE
BETF5E s MO AR, I—GESRWT:

BAEEE M AN = (A5 ICompressARC+ B E
fFHarness)x(3IE R 5 5) =SOTAERIEE — HEHER L

FAERFHHA:

o JLIAI4EIREEHY CompressARC ( Geometric Prior

Architecture)

o BM: HFEPHMIIEEYIEEFRIRENE,

o 3Z%§:. CompressARC HZEMEIRT T EZIOME —E
MUXE— P HENLE, ME—TRANTFTH"
(Equivariance) F“XFR4RRER” (Symmetry Breaking)
EPARCIR =k R



o AU BEENREHMPERIETEZE (WhkeiE. UL
%), RERBREMZFI ETER", MMRAtESE
TERRENZEHE,

o ZAMR: VAM{EE (Inductive Bias) BITREN A,
o NWABHYEM Harness ( Application-Layer

Refinement )
o BAR: MREBIAHSEZEA, WASME (Harness) X%

o IR TMEKFREEXST (Weights), TIEREHIMNIE
R—FEERER . XTREFHFRREREEBE—E".

u*ﬁﬁ"%lﬂ n\ u%ﬁt%ﬁ_ﬁ%?ﬁno
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FIFAZE 54%., XERBY ¥k

e FR: RATIETAMEREESIHNARZE (System 2 over
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o INFRIRIES (Verification Feedback Signal )
. B BRI,

. Z%g. TILEREPM Claude Opus iXE QWQ WEEH

& (“Wait...”, "l need to re-examine...") , ZIOERETIEE
e BERBARIR, KA ERNKRIEES, ALiEEE
TERE o

o ZFR: JTIAFD (Metacognition),

o SOTAEMHEEIG - BFHEMZS ( Accuracy vs Cost
Trade-off )

o B XTREZENTE.

o BUE: HHAEM 31% ->54% (EZEENZ), EAM
$0.81 -> $31 (Y 381F),



o £5i0: BEIM AIHERARESENE/IHELHERN, X
Erk ErTgERATHFSE, BERIF LR T IR 8]
B (Test-time Compute) FYBEM 4%,

o ZARR: AFRURE R,

T—mME: FIBENBESRESET, HITBIRIT AGI #
RHOIK, RtT4B7I8 Al NABEA R BEIRE 88" (Jagged
Intelligence) , URFNIRBESHIEENZEIEXIBE X R
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2. ESREAWIENRIRES. =801 Al AUEEEESEERIR
MIRE LR, XMXREFFALZE, RAHALRTHERE
NARECMRZIRTHIR. XMBESETIMTMm, H5l



BT ENEBERERE (jagged intelligence) ” X#¥ R ¥EHABTHE

2o

AR FRIRAEIERYIERTE 2025 FHMES N, B1F
ARC-AGI-2 (H&RH#IE). 2025 IMO £hEEHE (k%) #0 2025
ICPC 100% KRI (BHwiE) —FTEXLER Al HIERZIK
&fl. AALLEBIERENINAESIRE, XEESTRERE 5%,
A, EEXERT, el MnAENEE,

+BHEEE (Chain-of-thought) *&mBI&ZBBFY BHART Al 88
M—RRZIFR, A5 Transformer BI&BBFIY RAEMEE, SAM,
BIMDATHBENREME. RVAERFERZRARIXETE, E
OpenAl BY Sam Altman ¥, K£QXRHE 7% BY ChatGPT ®ZERF(E
AT “BEREN . BT EARANEREFE 5-10 F, HIfE
REBIFFE P20t

W ER U AR AR IERE H IR B AN, XAKRTHEM AL
TR, Bal, Al BEIEEURTHSERABAMGEAT . RN
ERRNER. FMFHEETRN 12-24 MARA, BEEHSES
BCEENSFHREE (1) REE X (2) TEZHRARERANER, 1§
ZERENER. XBETAREBNIRBEZHNMRFR Al RS
AR FERIRN R R, Hsu sENTIERET —1 Al 481k
183F, fEREMRE-WIERRNEE FYEFHTETHANER

o

FAT, W BERYRIEohLiRE L 7 ARt S BlE %, FE
ELRERANEY, AR TE, M KA BaaisES,
BRI, BRSNS LA ESE VLTS e RO SR A R E Y
BT RZ)NRBIERS,



Xt F ARC-AGI-1 fl ARC-AGI-2 130, FEITTHINAARRERRE
B8 (accuracy gap) MEFEZRTIE, MUREE

(efficiency gap) IAZBETFEMBIFMFHBAE, ARC Prize §
TEBR IR TR AGI HE, IENZRAEHAEE, BiTEHLE
£ 2026 FIE ARC-AGI-2 ARFE, LIREREFTE2ABRMAIEN
R FREHE,

REge1:2K, Al HEERAMRINLIFZREFER, XZAE
AGI TEARRY. FAMNATENR TR, FlUSEARN#EERNT

%, UREMHkE, FTEHREENINRE B XA KAV
Zlo

4.1 AIREME ENSEFIH, HRBEMNINGHETFFZIIZSAT
i, MaREIMUEG. RERETHIRIGROMAZE S —MR
R, 8% &)

2. REFEEIE
BETFE o mHOAR, I—ESRWT:
WHIAIBZIMLOR =(iREE X+ I BIERIRES) < BEHECOTS
BB AR RN =B sE
EXERIFHEA:
o WHIAIERIIOR
e BM: EXTHE# A FEKEEMMAA, FEEMM 4.

o B48: RSB, AEEMEFEREE BRI
JFmER %Y. BFalE (Knowledge Coverage)
BEFRAE (Verifiable Feedback) o

o AWM. Al BRIWNIWEEERELRTE. FIEFTE, A
NXEFIAR AR E ERR DR Ao



o HIREEX + IRIEIRBES
o B BRHMNER
- 1ZI8:
o HNREE: BB TR EL T KRR P,

o RIBES: HME—MIHE (N4miFSS. FFIURK
B2E) SIFRERE T, BER, XERHALEIF
(Refinement Loop) iE1THIHIIE.

o ZFERR: ZIWi2|Z + WL IE,
o BLEFECOTEEM ( Chain-of-Thought Scaling)
o BM: BENRERETHRAFEN LR,

o iBiB: CoT #HIEHEIS Transformer EZ89[7 F#1iL,
TR NE S oM Z S HIE, BB A RIRIE
(7%) o

e XA FitEXRFRENXAIARRE.
o - BRAMEREIFMRIM ( Fundamental Science Bottleneck )
o BM:. WEEF (Efficiency Gap).

o iBiB: EBIAFEMTIE (Engineering) MEHEILURS)
X, BEGALX—EERM (REEFE. DER) F3,
MAZE BRI Z M B AI R,

o XRI: BRI A BANEEFE, MIFRENRIZS
Ao
o TR BIEMEMIRRR.
o EUIRERE ( Jagged Intelligence)
o B BEHARMRIGEE,

o B AITEEEU (NERER. RwiZ) BEAZE, BE
HthE R s (40 ARC HREIE) KRARH, X5 A%



HRERY A AR T BERAXT L
o AR KHAIRMIHKHHEIEFEHBIDLIALER,

T—mfg: % 10 TTRERARIT “AliRE#E” (Knowledge
Overfitting) HIFIEX —HFATNMIRNES A Hi)IZ4RES FAEM
BY, A& EN MR R, XEZEM T K10
TMHEIER AGI,
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FTEHBENNGESD, MXEDHHREZHEIISSH RN AP,
ARC-AGI-1 1 ARC-AGI-2 ETEBEI ARG EIEEHITES TS
MIUERIEHX TP XAR I IR E
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T TAFBRREE N, HESEMEKRERETE 2T, 7]
DUEN S HEWMAIRES EFEENES. XEKE, MfERR
TR, EEBMMEETRINEENR, MRAHYIGEMNLEN
eI FHEMA (510, JRIZF2% 1ID), BEREEZTERELHT
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AR = XMIMKRIEIE ARC-AGI-1 1 ARC-AGI-2 ERXE—F
LEBALERHE, BARNTEHEESH—F. XRBEIE]
Gemini 3 WIERVIHERT 7 XMIER: “BItEEE (3). RENE
LI (6) Kb AR FBLEHFLABIESH (Gemini 3 Deep
Think)

FANH LLM BIFEMHEEIR& ARC-AGI S TEEE, BIR

RIEHIER(ER 7 IEHRY ARC EREBIREY, X5RZUZRAF ARC #iE
FREFEEPEFITREFNEIT—F UEENETF 2D JSON
SE AR TR B L LEFRY ARC HEBT,

4.2 B IFFENEEENRRIE AGI BATN I EXFHFAZ Y
“TEINEBENTFIREFER ARC, BENTEFREM XTI KR
Ne  TSiWME], ARC-AGI-1 #1 ARC-AGI-2 10 Al #HIEHEIE
HTEMENRFIER. AM, EERITUINERN,

FX L, ARC Prize EZ3ERFH/ R T —1EZHEII: &EMN
EMBMBEEEREARE THIHED R CER, XM
PEERSBNTEINENARERRERA, BEIRRE
HRBILIETTE), HEERANUAMEN,. TEFTEZRFHA
. MEAMNEERERENSE .

KBS EEN (Adaptation) o ENAR T BREIZOMER. X
—IIEERT g EERNEEN I —e W T BAEREASHE
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5|A Francois Chollet 2024 £ 12 BBJIE (21):  “¥YEXEEA
KAZEX Al BENESTR/IRERATEER, (REHE AGI BE&
BT "

XHHIEE] T ARC-AGI EUEISITRY A EIE: BT — ISt SR A4
C1E3F, BIMmLN Al AT EAHEE, NTRNARES,
Xt Al Z BIREEHERZS, RIEXTEX, FAEKRE] AGL,
BAIEFERRFA %L ARC-AGI-3, 1HHITF 2026 FHAH, FHITHFHE
FFRMSE, HeRrneH BB AR,

4.3 ARC-AGI-3 E3ENATMAE, EHI1EEFH A ARC-AGI-
3

2. REFEIE
BEF5E 10 mZOAER, IBEST:

AGIZRFIE =B ENEERN XN = A HEEE IR IR — HIiR
=B (h3EIE = (EasyForHumans - HardForAl) - 0
FERIFHIEA:
o HIRMBEIAMEIE ( Knowledge Leakage Inference)
o BM: REBUEHIE, LNEEINZ,

o JEHE: Gemini 3 IEZEIRTMEBERT, BIHNEHAERM
HMiE 3=t , 6=%0f . Xl ARC MEIEEHESR
BB T ARREIF)IZRIER R,

o IBEE: XMBEMIZIZ (Implicit Memorization) 5@
“FEAME MmIEZ B BRI R O] 8E, XIS4T A



s Ey Lt IR s
o FME: INEEHHNIAENSAITNR.
o AXHBBESBIMPE ( Limit of Human Task Design )
BA8: Francois Chollet B9t AGI & Xo
B REARKRLITHECRSERE Al A LE
B, AGI #&El, SARZRRHHEXERE Al B, AGI
MEBERT .

AWM. AGI AEEIENIE (U0 85%) REXHY, MM
BB ALE HRBIERRE XM,

o FM: BRNMHAAIHTER AR,
o  EUEMRNERMEX ( Benchmark Adaptation )

o B WUASEESNESERE,

o B BAAHSTT (EEEXTHER, 6 (BH)
i, ARC BIPAES REHEHFTARAS (ARC-AGI-
3) R Hard for APRIEME, LULEE Al FFEEIER
‘BB MIEKETIENR .

o Fh: mhSEE > HSHH

 (EasyForHumans - HardForAl) - 0

o i AGI NEITIMEXNEEITZMIRE. BRIXTD
EEBATSR/, BRAEE (A3£100% vs Al 24%)

T—mfsg: % 11 TUEEHANLEEZEFN ARC-AGI-3, ©¥#5]
AEHFHNRZERFE, MFESHIBEZRISARIE (Agentic) BES,
MR IRZE. ARFIEIZ. XBEREENXN—RETERER.
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(ELED) GFIERRZASHY ARC —1, ENZITEEMEI TALR
5, XA, BEBERIER AGI FiRFISSI AGI FRELXHHNRE
MEMEZE EERANEE, BINEEWEBE M RIARINZER
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FH)5 ARC Prize 2026 —i{2 & ARC-AGI-3, X MHTEVEERRZS
Fr&&E H 2019 5|\ ARC-AGI LR BXEARALTE, 22
IR RSP S RSHIEE, BE = M REASERIZET#
B, HEEMHN Al BN EERTN: BTE. M. 1212, BRI
MATTEESTo

WMEZEHEEEN—ERSE, FIMHFIRMHIAA, ARC-
AGI-3 BT IEMEBERSEIA R Al 1TEIE (BIESIUE) W
EEbES,

5 £51€ ARC Prize 2025 B 7 181E AGI BUFHEEFR#EE, Kaggle
B= 9 1E ARC-AGI-2 BiREIT 24%, iIEXIRREEEEK (90
R, BT 2024 F89 47 B). HUIEIR (refinement loop) EAH
DFEBHHMART HREES EZNEREL, STIHREFES
FEMEL Al EERREIER T X—5.

X—FIER T Al HEERNAMRA EZRTARBETEE, X
—ESBEBHITIRMZ LRI ASSHIREARE, RAXESES



RIBANIRE EMAWIER RS SHES BRI A ERB K, B
EHSINTHEANING, FEEEERITHRBEN RN,
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I8 (Anthropic, Google DeepMind, OpenAl, 1 xAl) #RIEIRE!
~LEIRET ARC-AGI RITERE, AT, BE/ELIMBLHN, 1T
2026 EHI A ARC-AGI-3 BIFARR T XFhIiER
(Adaptation) BYEIE—XEEREARZ R OERERN,

BATBNFEEITE ARC Prize, BIIEERLARESERRARE
Mo FRE ARC Prize 2025 FAM A EZMIEXE IR, AIEN
B9, HAJTE arcprize.org E3REX, FATHIBEIRE1L ARC-AGI 4k4:
TERZWAEIER SRR, FHZEHER AGI BV EE,

6 B3 6.1 35 ARC Prize 2025 I 1E5HI ARC-AGI ZFEILH
Ei E, 8% 2020 Kaggle TZF# 2022-2023 ARCathons, ]
RO EERIF R U R IR TN AT ARt X, Kaggle EATL
BRMNBEZIESRAPLIEEXBER, MBS SER
ARC Prize 2025 I IhEXEE,

2. REFEEIE
BETF5E 11 izONgs, BESHOT:

ARC-AGI-33ER BT = B A EHE (Agentic) — FHSIIOBET =
(REBE+HR i8I+ 7)< TR EE
SFHERIFAMIHEA:
e ARC-AGI-33BNEKIE ( Paradigm Shift )
o B MNEBEFIEHAIDUFEKIEX",

o ZiR: IRESHTH 2019 FLURMNE XEAKIR. HIFE
REHSH (LN, BhEL), F=K2EN



(Interactive Environments) o

o AR: BTERABEFHSHEIVIRG, MESHIFIRE
Rz,

o -BESIOMET (Static I/0 Mapping )
o B HAXRIEERER

o BIE: (NEMZEMAIELE (ARC-AGI-1/2) BEBIRBENNXIE
B, B EMNAEEZRMNERETH, W RAE M GIEZS

I,
. BRI BEHESSWARCMNA R, EMERRk
HOHIHET,

o (IFZHE + #F + 1212 + FF) ( New AI Capabilities)
o BA8: HIE (Agent) MITUAZHE,

. Zig:
o IR%E (Exploration): EEhEREE, MAESWENE
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o X (Planning): AT KIZBIRDETE,
o i21Z (Memory): EKEIEBERFRETF LT
o XI7F (Alignment): ERALEE, NMUNESHRIE

o
o ZFR: MITEE'E N8N BUEH,
o {TEHXMEEEE (Action Efficiency Metric)
o B EFHMR, ERELREA,

o Z%E: LIEILERVEC R, MELbZE ERER &V
IRET. XEBEREIMAEES Al ZIME (Sample
Efficiency) HIAFEWITLL,

o ZAR: FEE = ANETFIEN& LS S/R S,
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HIERRIRAE"
e [1] Acuaviva et al. (2025): fISRFINIZR3S L i E5 BEBTTAZR,

o [5] Jeremy Berman (2025): #{L iKYt E (Evolutionary
Test-Time Compute) ¥0fEISCIT SOTA,

o [7] Francois Chollet (2019): (XFZEHEMEE) (Onthe
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Abstract

The ARC-AGI benchmark series serves as a critical measure of few-shot generalization on novel
tasks, a core aspect of intelligence. The ARC Prize 2025 global competition targeted the newly released
ARC-AGI-2 dataset, which features greater task complexity compared to its predecessor. The Kaggle
competition attracted 1,455 teams and 15,154 entries, with the top score reaching 24% on the ARC-
AGI-2 private evaluation set. Paper submissions nearly doubled year-over-year to 90 entries, reflecting
the growing research interest in fluid intelligence and abstract reasoning. The defining theme of 2025
is the emergence of the refinement loop — a per-task iterative program optimization loop guided by a
feedback signal. Refinement loops come in a variety of forms, in particular evolutionary program synthesis
approaches and application-layer refinements to commercial Al systems. Such refinement loops are also
possible in weight space, as evidenced by zero-pretraining deep learning methods which are now achieving
competitive performance with remarkably small networks (7M parameters). In parallel, four frontier AI
labs (Anthropic, Google DeepMind, OpenAl, and xAI) reported ARC-AGI performance in public model
cards in 2025, establishing ARC-AGI as an industry standard benchmark for Al reasoning. However,
our analysis indicates that current frontier Al reasoning performance remains fundamentally constrained
to knowledge coverage, giving rise to new forms of benchmark contamination. In this paper, we survey
the top-performing methods, examine the role of refinement loops in AGI progress, discuss knowledge-
dependent overfitting, and preview ARC-AGI-3, which introduces interactive reasoning challenges that
require exploration, planning, memory, goal acquisition, and alignment capabilities.

1 Introduction: ARC-AGI

In 2019, Frangois Chollet formalized a new definition of artificial general intelligence (AGI), characterizing
it as a system capable of efficiently acquiring new skills and solving novel problems for which it was neither
explicitly designed nor trained. (7) As a first concrete attempt to measure this new definition of intelligence,
Chollet published the Abstraction and Reasoning Corpus (ARC) (6) (later renamed ARC-AGI to avoid
naming collisions with other AI benchmarks.) The original benchmark dataset is referred to as ARC-AGI-1.
It is a set of independent “tasks” (see figure 1), each consisting of a number of “demonstration pairs” (two or
more, with a median count of three) and one or more “test inputs”. A test pair consists of an “input grid”, a
rectangular grid of variable size (up to a maximum size of 30 rows by 30 columns) where each cell can have
one of ten distinct “values”, and an output grid which should be fully inferable from the characteristics of
the input grid. The goal is to use the demonstration pairs to understand the nature of the task and use this
understanding to construct the output grid corresponding to each test input. The test taker is allowed two
attempts per test input.

The defining characteristic of the benchmark is that it should not be possible to prepare for any of the
tasks in advance. Every task in the dataset follows a different underlying logic, requiring independent rule
discovery. All tasks were created by humans to ensure a high degree of novelty and diversity.

ARC-AGI tasks do not require specialized world knowledge (e.g., historical facts) nor language to solve.
The only assumed prior knowledge is Core Knowledge (7) — concepts such as objectness, basic topology,
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elementary integer arithmetic, etc. Human Core Knowledge has been investigated by Spelke et al. (26).
These knowledge priors are acquired by children very early (typically before age four) and are universally
shared by all humans. The ARC-AGI public training tasks are designed to expose test-takers to all the Core
Knowledge priors needed to solve ARC-AGI tasks.

1.1 Dataset Composition

Following ARC Prize 2024, we released ARC-AGI-2 in early 2025. ARC-AGI-2 maintains the same task
format and core principles as ARC-AGI-1 while incorporating more complex tasks with greater generalization
difficulty, and normalizing the distribution of task difficulty.

ARC-AGI-2 consists of a larger set of human-created tasks split into three primary subsets:

e Public training tasks (400, imported from ARC-AGI-1) - Intended to demonstrate the task format and
allow for learning the Core Knowledge priors.

e Semi-Private Evaluation tasks (120) - Used for intermediate leaderboard scoring during competitions.
While not publicly released, these tasks have been exposed to commercial APIs and thus carry some
risk of leakage.

e Private Evaluation tasks (120) - Used for final competition scoring and verification. This set is fully
private and theoretically free from leakage.

Ex.1 Input Ex.1 Output Ex.2 Input Ex.2 Output

Ex.3 Input Ex.3 Output Test Input Test Output

.AE .ﬁ

Figure 1: Example ARC-AGI task

State-of-the-art scores are only reported on the Semi-Private and Private Evaluation task sets to reduce the
risk of overfitting and data contamination.



An important characteristic of ARC-AGI tasks is that they remain hard for AI systems, yet easy for humans.
The original ARC-AGI-1 private evaluation tasks were tested by two people who scored 97% and 98%, and
collectively solved 100% of tasks.

For ARC-AGI-2, after selection and validation, 100% of the tasks were solved by at least two (or more)
independent, non-expert human testers drawn from the general public, with each task attempted by between
2 and 10 humans. The results of our human study establish that all tasks in ARC-AGI-2 are solvable by
humans with no prior training.

2 ARC Prize 2025 Results

2.1 Competition Progress

ARC Prize 2025 ran from March 26, 2025, to November 3, 2025. In total, 1,455 teams submitted 15,154
entries to the Kaggle competition, at levels similar to ARC Prize 2024. The top competition score reached
a new state-of-the-art on the ARC-AGI-2 private dataset of 24% at a compute cost of $0.20 per task.

The paper submission track saw significant growth, with 90 papers submitted, up from 47 in 2024. Due
to the exceptional quality of submissions, we expanded the paper prizes to include 5 additional runners-up
beyond the top three award winners, and recognized 8 additional honorable mentions.

All ARC Prize 2025 winning solutions and papers are open-source and available at arcprize.org,.

2.2 Top Scores

Place Prize Team ARC-AGI-2 Private Score
1st $25k  NVARC (25) 24.03%
2nd $10k  the ARChitects (27) 16.53%
3rd $5k  MindsAI (8) 12.64%
4th $5k Lonnie (24) 6.67%
5th $5k G. Barbadillo (4) 6.53%

Table 1: ARC Prize 2025 Top Score winners.

The top three Kaggle submissions demonstrate continued progress in test-time training and ensemble tech-
niques.

1st Place - NVARC (24.03%): This entry builds upon the 2024 ARChitects winning entry (which
leverages test-time training) and makes heavy use of synthetic data generation to improve model performance.

2nd Place - the ARChitects (16.53%): A 2D-aware, masked-diffusion language model with recursive
self-refinement and perspective-based scoring. This solution improved substantially over the team’s 2024
autoregressive system through novel architectural modifications tailored for spatial reasoning.

3rd Place - MindsAI (12.64%): A heavily-engineered test-time-training pipeline that combines test-
time fine-tuning, augmentation ensembles, tokenizer dropout, and novel pretraining techniques to produce
a competitive score on ARC-AGI-2.

Video interviews with the 1st, 2nd, and 3rd place Top Score winners are available on the ARC Prize web-
site (3).
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2.3 Paper Awards

Place Prize Authors Title

1st $50k A. Jolicoeur-Martineau Less is More: Recursive Reasoning with Tiny Net-
works (15)

2nd $20k J. Pourcel, C. Colas, P. Self-Improving Language Models for Evolutionary

Oudeyer Program Synthesis: A Case Study on ARC-AGI

(23)

3rd $5k I. Liao, A. Gu ARC-AGI Without Pretraining (19)

Runner Up $2.5k 1. Joffe, C. Eliasmith Vector Symbolic Algebras for the Abstraction and
Reasoning Corpus (14)

Runner Up $2.5k  J. Berman From Parrots to Von Neumanns: How FEvolution-
ary Test-Time Compute Achieved State-of-the-Art
on ARC-AGI (5)

Runner Up $2.5k  E. Pang Efficient Evolutionary Program Synthesis (22)

Runner Up $2.5k  E. Guichard, F. Reimers, M. ARC-NCA: Towards Developmental Solutions to

Kvalsund, M. Lepperod, S.
Nichele

the Abstraction and Reasoning Corpus (11)

Table 2: ARC Prize 2025 Paper Award winners.

The top three Paper Awards recognized novel approaches that advance the theoretical and practical under-
standing of artificial fluid intelligence.

1st Place - Jolicoeur-Martineau: The Tiny Recursive Model (TRM) is a TM-parameter, single-network
recursive model with separate answer and latent states. Using deep supervised refinement, TRM demon-
strates that extremely small networks can achieve competitive ARC-AGI performance when trained with
appropriate recursive reasoning mechanisms.

2nd Place - Pourcel, Colas, and Oudeyer: SOAR (Self-improving Operators for Automated program
Refinements) is a self-improving evolutionary program synthesis framework that fine-tunes an LLM on its
own search traces. This approach improves open-source ARC-AGI-1 solution performance by up to 52%
without requiring human-engineered domain-specific languages (DSLs) or solution datasets, demonstrating
the potential for autonomous improvement in program synthesis systems.

3rd Place - Liao and Gu: CompressARC is an MDL-based (Minimum Description Length), single puzzle-
trained neural code golf system that achieves 20-34% on ARC-AGI-1 and 4% on ARC-AGI-2 without any
pretraining or external data. This work demonstrates that pure test-time optimization based on description
length minimization can solve abstract reasoning tasks without leveraging large-scale pretraining.

Video interviews with the Paper Award winners are available on the ARC Prize website channel ().

2.4 Honorable Mentions

FEight additional papers received honorable mention recognition for their contributions to ARC-AGI research:

e K. Hu et al., “ARC-AGI is a Vision Problem!” (13)

e D. Franzen, J. Disselhoff, D. Hartmann, “Product of Experts with LLMs: Boosting Performance on
ARC Is a Matter of Perspective” (10)

e G. Barbadillo, “Exploring the combination of search and learn for the ARC25 challenge” (4)



A. Das, O. Ghugarkar, V. Bhat, J. McAuley, “Beyond Brute Force: A Neuro-Symbolic Architecture for
Compositional Reasoning in ARC-AGI-27 (9)

e R. McGovern, “Test-time Adaptation of Tiny Recursive Models” (20)

e P. Acuaviva et al., “Rethinking Visual Intelligence: Insights from Video Pretraining” (1)

J. Cole, M. Osman, “Don’t throw the baby out with the bathwater: How and why deep learning for
ARC” (8)

e 1. Sorokin, J. Puget, “NVARC solution to ARC-AGI-2 2025”7 (25)

3 Program Refinement Loops

The central theme driving AGI progress in 2025 is the emergence of the refinement loop. At its core, a
refinement loop iteratively transforms one program or model version into a slightly better one, based on a
feedback signal.

3.1 Types of refinement loops

Representatives of refinement loops include:

e Deep learning with test-time training methods, where the program being refined is the weights
of a pretrained model.

e Zero-pretraining deep learning methods such as TRM.

e Evolutionary Program Synthesis in either symbolic program space or natural language program
space.

e Test-time Chain-of-Thought optimization with feedback from a verifier model.

Among these, two represent especially interesting developments for 2025: Evolutionary Program Synthesis
and Zero-pretraining deep learning methods.

3.1.1 Evolutionary Program Synthesis

Examples of this technique include J. Berman (5) and E. Pang (22). Berman’s approach employs an evo-
lutionary search harness that evolves ARC solution programs in natural language. Pang’s approach follows
a similar strategy but operates in Python and dynamically creates a program abstraction library to guide
synthesis.

Both approaches implement a two-phase refinement process. First, an exploration phase generates many
candidate solutions. Second, a verification phase analyzes these programs to produce a feedback signal.
This cycle repeats per task until the resulting program is fully refined and provides accurate answers for all
training input/output pairs.



3.1.2 Zero-Pretraining Deep Learning Methods

Refinement loops are also becoming the basis for a new type of training paradigm for deep learning models.

Classically, deep learning models are trained on input/output pairs using gradient descent to create a static
neural network. This training algorithm gradually refines a high-dimensional curve in the network’s latent
space. At inference time, when presented with a new input, the network performs forward passes to ap-
proximate the output based on this curve. In 2023 and 2024, this paradigm was expanded to add test-time
training, where the network is further fine-tuned at inference time on examples of a novel task (a process
which is itself a kind of program refinement loop). In this paradigm, the neural weights are trained to
represent a task-specific solver program. Test-time training is responsible for the top scores in both ARC
Prize 2024 (the ARChitects) and 2025 (NVARC).

Input/output pairs are still used as ground truth and refinement loops play a key role in training, mirroring
program synthesis approaches but operating in weight space rather than symbolic space.

More recent work demonstrates early success with a version of this that does away with pretraining entirely,
initializing a network from scratch for a specific task and fitting the weights to encode a task-solving pro-
gram using only examples of that task. Examples include Liao et al. (19), Hierarchical Reasoning Models
(HRM) (28) and Jolicoeur-Martineau (15).

This approach exhibits two unusual properties:

1. The resulting networks are extremely small relative to their ARC-AGI performance.

2. All material task-specific training occurs at test time.

3.2 Open Source Examples
3.2.1 Tiny Recursive Model (TRM)

The Tiny Recursive Model (TRM) (Paper Award 1st Place, Jolicoeur-Martineau (15)), which builds upon
the earlier Hierarchical Reasoning Model (HRM) (28), achieves 45% test accuracy on ARC-AGI-1 and 8%
on ARC-AGI-2 with only a 7TM parameter network. From the paper:

Tiny Recursive Model (TRM) recursively improves its predicted answer y with a tiny network.
It starts with the embedded input question z and initial embedded answer y, and latent z.
For up to Ny, = 16 improvement steps, it tries to improve its answer y. It does so by i)
recursively updating n times its latent z given the question x, current answer y, and current
latent z (recursive reasoning), and then ii) updating its answer y given the current answer y and
current latent z. This recursive process allows the model to progressively improve its answer
(potentially addressing any errors from its previous answer) in an extremely parameter-efficient
manner while minimizing overfitting.

3.2.2 CompressARC

CompressARC (Paper Award 3rd Place, Liao and Gu (19)) uses only 76K parameters, yet achieves 20%
on the ARC-AGI-1 evaluation set, processing each puzzle in approximately 20 minutes on a single NVIDIA
RTX 4070 GPU.

This solution features three distinctive characteristics:
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Figure 2: TRM architecture.

e No pretraining: Models are randomly initialized and trained only at test time.
e No dataset: One model trains on a single target task and produces one answer.

e No branching search: The approach relies solely on gradient descent.

The method operates by minimizing the description length of each task at test time, following the Minimum
Description Length (MDL) principle. Liao derives how a standard Variational Autoencoder (VAE) loss with
decoder regularization can substitute for combinatorial search to refine very small neural network programs.
The generalization achieved by such a compact network is remarkable.

3.3 Commercial Examples

Evidence of iterative refinement appears in commercial Al reasoning systems. A Chain-of-Thought can be
interpreted as a natural language program that transforms one latent state into another.

Consider ARC-AGI-1 task #4cd1b7b2. Gemini 3 Pro used 96 reasoning tokens to solve this task, whereas
Gemini 3 Deep Think employed 138,000 tokens. Higher reasoning modes for these systems exhibit a strong
correlation with increased reasoning token counts (longer programs), even when not strictly necessary for
task completion.

These extended natural language programs enable more refinement through additional exploration and ver-
ification cycles. Analysis of reasoning outputs from commercial systems reveals self-corrective behavior:
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Figure 3: CompressARC architecture and approach.

. which fails the complete set requirement. This suggests the current solution might not fully
satisfy the puzzle’s constraints. I need to re-examine the box configuration and explore alternative
arrangements ... (Claude Opus 4.5)

. which suggests further investigation is needed to complete the analysis. I'll verify the center
point at row 9, column 15 ... (Claude Opus 4.5)

. maybe each input row is being duplicated three times in the output, but how does that fit with
the rest? Wait, the third output row is ... (QwQ 32B)

An important finding with frontier commercial models released in late 2025 (Gemini 3, Claude Opus 4.5,
etc.) is that refinement loops can be implemented at the application layer to meaningfully improve task
reliability, rather than relying solely on provider reasoning systems. This approach still requires that the
foundational model possess adequate knowledge coverage of the task domain.

3.4 Model Refinement Harnesses

In the last quarter of 2025, we introduced a new leaderboard category termed “Model Refinements” to track
application-layer improvements to commercial Al systems, also known as harnesses. We verified a Gemini 3
Pro refinement harness implementation open-sourced by Poetiq, which improves performance on ARC-AGI-2
from a baseline of 31% accuracy at $0.81 per task to 54% accuracy at $31 per task. The same refinement
approach achieved comparable gains on Claude Opus 4.5, with accuracy rivaling Gemini 3 Pro but at about
twice the cost per task (approximately $60 per task), as reported by Poetiq.

Currently, the refinement harnesses we observe are domain-specific. However, techniques such as GEPA (18)
and DSPy (17) enable the development of general-purpose reliability improvements at the application layer,
provided a verifier or environment capable of producing a feedback signal is available.

We anticipate that general refinement harness improvements will eventually be integrated behind the API of
commercial Al systems. Simultaneously, we expect that bleeding-edge, task-specific accuracy will continue
to be driven by knowledge specialization and application-layer verifiers.



4 AGI Progress & The Future of ARC-AGI

As of 2025, with the advent of Al reasoning systems, task domains with the following two characteristics are
reliably automatable, with no new science needed:

1. Sufficient task knowledge coverage exists in the pretraining corpus.

2. The task provides a verifiable feedback signal.

Current Al reasoning performance is fundamentally related to model knowledge. This relationship warrants
careful consideration, as human reasoning capability is not similarly bound to knowledge. This coupling has
various implications and leads to imprecise characterizations such as “jagged intelligence.” (16)

Supporting evidence for this knowledge-dependent reasoning emerged across multiple domains in 2025, in-
cluding performance on ARC-AGI-2 (abstract reasoning), 2025 IMO Gold Medal achievement (mathematics),
and 2025 ICPC 100% performance (competitive programming) — all driven by Al reasoning systems. These
task domains are substantially broader than those addressable by pure language models without reasoning
capabilities. However, they remain relatively narrow in a global context.

The invention and scaling of chain-of-thought synthesis represents a profound upgrade in Al capability com-
parable to the invention and scaling of transformers. However, we are still in the early stages of deployment.
Few users have directly experienced these tools. According to Sam Altman (OpenAl), approximately 7% of
ChatGPT free users have engaged with “thinking” mode (2). We expect diffusion of current technology to
require 5-10 additional years, even within business contexts alone.

Collecting domain knowledge and building verifiers is not cost-free. This represents relatively expensive and
specialized work. Presently, Al automation is a function of the societal willingness to invest in the necessary
talent, compute, and data resources. We anticipate steady progress over the next 12-24 months as society
conducts a global search for problems that are both (1) most important and (2) fall within acceptable cost
thresholds. This includes early results in which Al systems produce novel scientific knowledge in fields with
adequate knowledge coverage. Recent work by Hsu reports an Al refinement loop using a generator—verifier
architecture to produce novel results in quantum physics (12).

However, many potentially automatable problems fall beyond current societal cost cutoffs. As engineering
advances, costs will decrease, expanding the set of domains that can be automated. More broadly, machines
capable of highly efficient adaptation to produce paradigm-shifting innovation remain firmly within the realm
of science fiction.

For the ARC-AGI-1 and ARC-AGI-2 format, we assess that the Grand Prize accuracy gap is now primarily
bottlenecked by engineering, while the efficiency gap remains bottlenecked by fundamental science and new
ideas. ARC Prize exists to inspire and reward open AGI progress, and as previously committed, we will
continue operating the ARC-AGI-2 Grand Prize competition in 2026 to track progress toward a fully open
and reproducible solution.

Despite their capabilities, Al reasoning systems still exhibit numerous flaws and inefficiencies necessary to
overcome in order to reach AGI. We still need new ideas, such as methods to separate knowledge and
reasoning, among other challenges. New benchmarks will be needed to highlight the moment in which those
ideas arrive.

4.1 Knowledge Overfitting

In machine learning, overfitting occurs when a model learns excessive detail from training data. The model
memorizes exact training examples rather than learning general patterns, leading to poor performance on



unseen test data. A common Al benchmarking critique is that model providers are incentivized to “benchmark
maximize” or “train to the test” to report high scores for marketing purposes that do not generalize to real-
world applications. ARC-AGI-1 and ARC-AGI-2 were designed to resist this style of overfitting by employing
a private dataset for official scoring and verification.

AT reasoning systems have altered the landscape in a manner that reflects genuine progress. They have
demonstrated non-zero fluid intelligence and can adapt to tasks somewhat removed from their precise knowl-
edge base when the foundational model is grounded in the broader domain. This means that even well-
designed benchmarks resistant to direct memorization can now be “overfit” if the public training and private
test sets are too similar (e.g., independent and identically distributed) and the model has been trained on
substantial public domain data.

We assert that this phenomenon is now occurring with ARC-AGI-1 and ARC-AGI-2 — accidentally or inten-
tionally, although we cannot determine which.

Evidence from our Gemini 3 verification demonstrates this pattern:

Target is Green (3). Pattern is Magenta (6) Solid. Result: Magenta Square on Green ...
(Gemini 3 Deep Think)

Our LLM verification harness does not mention ARC-AGI tasks or color formats, yet the model employs
correct ARC color mappings in its reasoning. This strongly suggests that ARC data are well-represented
in the underlying model — sufficiently so to make correct ARC inferences based solely on the structure and
format of 2D JSON arrays of integers.

4.2 Characterizing AGI through continual benchmark adaptation

Although we assess that this new form of “overfitting” assists models in solving ARC, we cannot precisely
quantify the magnitude of this effect. Regardless, the ARC-AGI-1 and ARC-AGI-2 formats have provided a
valuable scientific indicator of Al reasoning progress. However, benchmark design must adapt.

In fact, ARC Prize has revealed a broader lesson over the past two years: the most valuable and effective
benchmarks are created by teams fundamentally committed to driving progress. Such progress requires
a sustained dedication to understanding the underlying technology through serious study, a willingness to
identify flaws and incentivize corrective action, and adaptation as the technology improves. It also requires
a year-over-year commitment. Building effective benchmarks demands sustained effort.

The critical concept is adaptation. Adaptation represents the core mode of intelligence. This process extends
beyond creating effective benchmarks — it constitutes the ultimate measure of general intelligence itself.

From Frangois Chollet in December 2024 (21):

You’ll know AGI is here when the exercise of creating tasks that are easy for regular humans but
hard for AI becomes simply impossible.

This captures the ARC-AGI benchmark design methodology: operate a real world refinement loop by iter-
atively improving benchmarks in response to Al progress to drive the gap between “easy for humans, hard
for AI” toward zero.

By this definition, we have not yet achieved AGI. We are actively developing ARC-AGI-3 for release in early
2026 and are optimistic about the new format. We anticipate that it will stimulate the development of
entirely novel ideas.
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4.3 ARC-AGI-3

Over the past six months, we have focused on developing ARC-AGI-3. Like all versions of ARC, it is designed
to be “easy for humans, hard for AI,” while serving as the most valuable and scientifically useful benchmark
pointing toward AGI and identifying what remains necessary to achieve it. We are building hundreds of
never-before-seen interactive environments designed to test agentic reasoning.

We plan to release ARC-AGI-3 in early 2026 alongside ARC Prize 2026. This new benchmark version
marks the first major format change since ARC-AGI was introduced in 2019. While the first two versions
challenged static reasoning, the third version is designed to challenge interactive reasoning and requires new
AT capabilities to succeed: exploration, planning, memory, goal acquisition, and alignment.

Efficiency is a fundamental aspect in the measurement of intelligence. We are particularly optimistic that the
ARC-AGI-3 scoring metric will enable formal comparison of human and AI action efficiency (i.e., learning
efficiency) for the first time.

5 Conclusions

ARC Prize 2025 demonstrated continued open-source progress towards AGI, with the top Kaggle score
reaching 24% on ARC-AGI-2 and significant growth in paper submissions (90, up from 47 in 2024). The
emergence of the refinement loop as a central theme represents a significant shift in approaches to abstract
reasoning, evidenced by both zero-pretraining deep learning methods and commercial Al reasoning systems.

The year revealed that Al reasoning performance remains fundamentally constrained by knowledge cover-
age, a characteristic distinct from human reasoning which is capable of extreme generalization. While this
enables reliable automation of tasks with sufficient knowledge coverage and verifiable feedback signals, it
also introduces new forms of overfitting that require adaptive responses in benchmark design.

ARC-AGI has served as a valuable scientific indicator for Al reasoning progress, with four major Al labs
(Anthropic, Google DeepMind, OpenAl, and xAI) reporting ARC-AGI performance on model cards. How-
ever, the benchmark must continue to evolve. The development of ARC-AGI-3, scheduled for release in early
2026, represents this commitment to adaptation — the core principle of intelligence itself.

We remain committed to operating ARC Prize annually until the benchmark is defeated with a public refer-
ence solution. All ARC Prize 2025 winning solutions and papers are open-source, reproducible, and available
at larcprize.org. We aim for ARC-AGI to continue serving as a focal point for research on generalization and
reasoning, and to support sustained open progress towards AGI.

6 Appendix

6.1 Acknowledgments

ARC Prize 2025 builds on the foundation established by previous ARC-AGI competitions, including the
2020 Kaggle competition and the 2022-2023 ARCathons. We are grateful for the continued evolution of the
benchmark and the growing community it has fostered.

ARC Prize would not be possible without the full support of the ARC Prize team, our competition partners
at Kaggle, and our sponsors. Kaggle plays a critical role in the artificial intelligence and machine learning
ecosystem, and their continued partnership has been instrumental in the success of ARC Prize 2025.
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We extend our gratitude to all frontier Al labs who worked with us in 2025 to verify their new Al systems on
ARC-AGI, including OpenAl, xAI, Anthropic, and Google DeepMind. This collaboration has been invaluable
in establishing ARC-AGI as a meaningful benchmark for reasoning progress.

We recognize the dedication of our community members who have built tools, answered questions, and served
as resources for researchers and participants throughout the year.

Finally, we extend our deepest gratitude to all participants in ARC Prize 2025, especially those who shared
their work openly with the community. Your dedication advances the broader field of Al, bringing us closer
to realizing the transformative potential of AGI for humanity. We are inspired by everyone with new ideas
who works on ARC-AGI and remain committed to stewarding this attention as a north star toward AGI.
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