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用等式解释第一页并解释相关项。

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

根据第一页的核心内容（摘要与引言），我为你提炼了以下的Linux文件名格式严格

等式，并对其进行详细解读。

核心归纳等式

计算受限智能的新信息论＝认知复杂性Epiplexity＋结构化内容提取－时间受限熵的伪随机

干扰

等式逻辑详细解读

这个等式重新定义了在人工智能时代（特别是大模型预训练背景下），我们应该如何

衡量“数据价值”和“可学习的信息”。传统的香农信息论在解释现代AI现象时已经失

效，因为它是基于无限计算能力的假设。

1. 左侧：计算受限智能的新信息论

概念定义：这是论文试图建立的新理论框架。它不再假设观察者（即AI模型或

人类）拥有无限的计算能力，而是基于“计算受限观察者（Computationally

Bounded Observer）”的视角 。

第一页背景：传统的香农熵（Shannon entropy）和柯尔莫哥洛夫复杂性

（Kolmogorov complexity）在面对现代AI问题时显得苍白无力。例如，它们认

为确定性变换（如合成数据）不能增加信息量，但实际上合成数据对模型很有

用 。
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核心思想：对于一个计算能力有限的智能体来说，数据的价值不在于它包含多

少不可预测的随机性，而在于它能提取出多少可复用的结构 。

2. 右侧第一项：认知复杂性Epiplexity

概念定义：这是论文提出的核心度量标准，全称为“Epistemic Complexity”。它

量化了在计算受限的情况下，观察者能够从数据中学习到的“结构化信息”的量 

。

数学/逻辑含义：它不同于单纯的压缩数据，它是模型为了解释数据中的非随机

部分而必须构建的内部程序的复杂性（即模型权重的有效信息量） 。

第一页体现：Epiplexity 为数据选择（Data Selection）提供了理论基础，指导

我们如何选择、生成或转换数据以帮助模型泛化，而不仅仅是做模型选择 。

3. 右侧第二项：＋结构化内容提取

概念定义：指数据中那些包含逻辑、规则、因果关系等可被模型学习和迁移的

内容。

思想：论文指出，信息是可以通过计算被“创造”出来的。例如，通过确定性的计

算过程（如AlphaZero下棋或动力系统演化），可以涌现出原始数据生成过程中

不存在的新结构 。

悖论解决：传统理论认为确定性过程不增加信息，但这一项解释了为什么对现

有数据进行计算处理（如重排序、合成）能揭示出新的可学习结构 。

4. 右侧第三项：－时间受限熵的伪随机干扰

概念定义：这是需要从总信息量中剔除的部分。指的是那些对于计算受限的观

察者来说看起来像随机噪声、无法预测且无法学习的内容 。

核心区分：Epiplexity 捕捉的是结构，而排除了“时间受限熵（Time-bounded

entropy）”。例如，伪随机数生成器的输出在有限算力下看起来是随机的（高

熵），但实际上并没有可学习的深层结构 。
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继续弄下一页。同上面的模式一样弄。

数据启示：这一项告诉我们，高熵（看起来信息量很大）的数据并不一定好，

如果是单纯的噪点或加密数据，对模型训练没有意义，因为它们缺乏可提取的

结构 。

总结

第一页的核心思想是通过引入 Epiplexity，将“信息”拆解为可学习的结构（对泛化有

益）与不可预测的噪声（对泛化无益）。这个等式打破了香农信息论在有限算力世界

的局限，解释了为什么AlphaZero能无师自通，以及为什么合成数据有效。

Would you like me to generate a visualization diagram for this specific

"Epiplexity" concept based on the first page's logic?

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档第二页的核心内容（图1的详细图解与引言的延续），我为你提炼了以下的

Linux文件名格式严格等式，并进行了详细的逻辑拆解。

这一页的核心在于通过图表（Figure 1）直观地定义了“结构化信息”与“随机信息”的

区别，并论证了计算过程本身可以创造信息。

核心归纳等式

Epiplexity结构化信息图解＝计算受限观察者视角＋计算衍生涌现结构＋泛化复用电路－不

可学习的时间受限熵

等式逻辑详细解读

这个等式解释了第二页图1（Figure 1）的三个子图以及引言部分关于AlphaZero的论

述，展示了新理论如何区分“有用的结构”和“无用的噪声”。

1. 左侧：Epiplexity结构化信息图解

概念定义：这是对第二页图1（Figure 1）核心概念的数学化表达。它不仅仅是

一个度量，更是一种看待数据的新视角 。
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页面背景：图1展示了三种不同类型的数据（简单的重复代码、复杂的动物图

片、纯随机的API密钥），传统的熵无法区分它们的学习价值，而Epiplexity可

以。

2. 右侧第一项：计算受限观察者视角

概念定义：这是区分信息类型的先决条件。只有当观察者的算力是有限的，这

种分类才有意义。

数据对比（基于图1左侧面板）：

低随机低结构（如简单的颜色渐变、重复的代码）：对模型来说太简单，

Epiplexity和熵都很低，没有学习价值 。

高随机低结构（如随机API密钥、噪声图）：熵很高（不可预测），但

Epiplexity很低（没有可学习的规律），模型学不到东西 。

中随机高结构（如猫的图片、算法逻辑）：这是最有价值的数据。虽然包含

一定的不可预测性（熵），但包含大量可复用的模式（Epiplexity高） 。

3. 右侧第二项：＋计算衍生涌现结构

概念定义：这是本页最反直觉的理论突破——信息可以通过确定性的计算过程

被“创造”出来。

思想（基于图1右上角面板）：传统的观点认为确定性变换不增加信息。但论文

指出，像洛伦兹吸引子（Lorenz attractor）或细胞自动机这样的动力系统，通

过确定性的规则（Initial Condition -> Deterministic Dynamics），可以涌现出复

杂的结构（Emergent Structure） 。

案例支持：AlphaZero从零人类数据开始，仅靠确定的游戏规则和自我博弈（计

算），就获得了巨大的知识（权重中的信息），这是传统信息论无法解释的 。

4. 右侧第三项：＋泛化复用电路

概念定义：这是结构化信息的最终用途，即支持分布外（OOD）泛化。
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继续弄下一页。

逻辑（基于图1右下角面板）：Epiplexity 衡量的是模型从数据中提取出的“程序”

或“电路”（shared circuits/subprograms）。这些被提取出的逻辑结构（如识别物

体的边缘、理解物理规律）可以在从未见过的任务（OOD Task）中被复用 。

结论：Epiplexity 高的数据能让模型学会通用的技能，而不仅仅是记忆训练集的

统计特征。

5. 右侧第四项：－不可学习的时间受限熵

概念定义：这是需要被剔除的“伪随机性”或“真随机性”。

思想：时间受限熵（Time-bounded entropy）捕捉的是数据中的不可预测性

（如伪随机数生成器的输出）。对于计算受限的观察者来说，这部分看起来像随

机噪声，无法被压缩成更短的程序，因此对提升模型能力没有帮助，必须从总

信息中减去 。

总结

第二页通过可视化的方式确立了 Epiplexity 的核心地位：它是数据中经过计算挖掘

出的、可被模型复用于新任务的逻辑结构。这个等式告诉我们，好数据不是“信息量

（熵）”最大的数据，而是“可计算结构”最丰富的数据。

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档第三页的核心内容（三大信息论悖论及其修正），我为你提炼了以下的

Linux文件名格式严格等式，并进行了详细的逻辑拆解。

这一页的核心在于揭示了传统信息论（香农熵、柯尔莫哥洛夫复杂性）与现代AI实

践（如AlphaZero、大模型）之间的矛盾，并提出了基于“计算受限”的解决方案。

核心归纳等式

信息论悖论的计算受限修正＝确定性计算的信息创生＋因式分解顺序的非对称性＋超越生成法

则的结构涌现－无限算力下的香农等价假设

等式逻辑详细解读
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这个等式概括了第三页列举的三个看似违反传统理论的“悖论”，以及Epiplexity如何

通过引入计算约束来解决这些矛盾。

1. 左侧：信息论悖论的计算受限修正

概念定义：这是本页的主题。作者指出了现有理论（假设无限算力）与实际观

察到的AI现象之间的裂痕。

页面背景：论文列举了三个悖论，这些悖论在香农信息论中被认为是真理，但

在计算受限的智能体（如神经网络）中却不成立 。

核心思想：为了解释现代AI的成功，必须引入“计算受限观察者”的概念，修正对

信息的传统理解 。

2. 右侧第一项：确定性计算的信息创生

对应悖论：悖论1（Paradox 1: Information cannot be increased by

deterministic processes）。

传统观点：确定性变换（Deterministic transformations）不能增加信息量（数

据处理不等式） 。

修正逻辑：AlphaZero从零开始，仅通过确定性的自我博弈（计算），就“创造”

了关于国际象棋的深层策略信息；合成数据（Synthetic Data）也能提升模型能

力 。

结论：对于算力有限的观察者，计算过程本身就是信息的来源。虽然总的理论

信息量没变，但“可访问的结构化信息（Epiplexity）”增加了。

3. 右侧第二项：＋因式分解顺序的非对称性

对应悖论：悖论2（Paradox 2: Information is independent of factorization

order）。

传统观点：先观测X再观测Y，与先观测Y再观测X，获得的总信息量应该是一样

的（对称性） 。
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修正逻辑：LLM在从左到右阅读文本时学习效果更好，表现出“时间之箭”；密码

学中的单向函数也证明了正向计算容易、反向预测难 。

结论：数据的顺序决定了提取信息的难度。对于计算受限的观察者，不同的因

式分解（顺序）意味着完全不同的结构化信息获取量。

4. 右侧第三项：＋超越生成法则的结构涌现

对应悖论：悖论3（Paradox 3: Likelihood modeling is merely distribution

matching）。

传统观点：模型最好也就是完美拟合数据生成过程，不可能学到比生成过程更

多的东西 。

修正逻辑：在“康威生命游戏（Conway's Game of Life）”中，生成规则极其简单

（几行代码），但演化出的涌现结构（如滑翔机、震荡子）非常复杂 。

结论：模型可以学到比生成规则更丰富的内容。为了预测复杂现象，计算受限

的观察者必须学习这些涌现的高层结构（Epiplexity），而不是简单地模拟底层

生成规则 。

5. 右侧第四项：－无限算力下的香农等价假设

概念定义：这是导致上述悖论的根源，必须被摒弃的旧假设。

思想：香农信息论和算法信息论都假设观察者拥有无限的计算能力（Unlimited

computational capacity） 。

修正：在这个假设下，加密数据和随机噪声没区别，计算也不创造价值。但在

现实（计算受限）中，这种等价性是错误的。必须减去这种假设，才能正确评

估数据的价值。

总结

第三页通过这三个悖论强有力地论证了：在计算资源有限的世界里，数据的价值不

仅取决于其统计特性（熵），更取决于其结构的可计算性与可提取性。 Epiplexity正

是为了量化这种“计算受限下的结构价值”而提出的。
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继续弄下一页。

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档第四页的核心内容（算法信息论背景、Sophistication概念及其局限、最小

描述长度原则MDL），我为你提炼了以下的Linux文件名格式严格等式，并进行了详

细的逻辑拆解。

这一页主要探讨了Epiplexity的理论前身，解释了为什么现有的算法信息论概念（如

Sophistication）在无限算力假设下会失效，以及Epiplexity如何借用MDL原则来重建

理论。

核心归纳等式

Epiplexity理论根基＝算法复杂度Sophistication＋最小描述长度原则MDL－无限算力下

的复杂性坍缩

等式逻辑详细解读

这个等式展示了Epiplexity是如何在继承传统理论（Sophistication和MDL）的基础

上，通过修正“算力假设”而诞生的。

1. 左侧：Epiplexity理论根基

概念定义：这是第四页的重点，旨在梳理新理论的学术渊源。

页面背景：在正式定义Epiplexity之前，论文回顾了“算法随机性”和“最小描述长

度（MDL）”，并指出了它们在解释现代AI问题时的不足 。

核心思想：Epiplexity不是凭空产生的，它是将MDL原则应用到计算受限观察者

身上的结果。

2. 右侧第一项：算法复杂度Sophistication

概念定义：这是一个在算法信息论中较少为人知但非常重要的概念，意在区分

“随机信息”和“结构化信息” 。

数学含义：Sophistication被定义为能够生成该数据的最小集合S的柯尔莫哥洛

夫复杂性 。简单来说，它试图量化对象中的“非随机结构”。
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作用：它是Epiplexity的思想原型，试图捕捉数据的“结构”，而不仅仅是压缩长

度 。

3. 右侧第二项：＋最小描述长度原则MDL

概念定义：这是一个用于模型选择的统计学准则，核心是“奥卡姆剃刀” 。

公式逻辑： 。即最佳的模型应该最小化“模

型描述长度  ”与“给定模型下的数据编码长度”之和 。

Epiplexity的借用：Epiplexity 直接借用了这种“两部分编码（Two-part code）”

的形式，但将其目标从“给定数据选模型”反转为“给定算力选数据” 。

4. 右侧第三项：－无限算力下的复杂性坍缩

概念定义：这是传统Sophistication理论的致命缺陷，也是必须被“减去”的旧观

念。

思想：在无限算力假设下，许多看起来复杂的现象（如流体混合）其实可以用

很简单的程序模拟出来，从而失去了其“复杂性” 。同时，对于无限算力的观察

者，加密信息和真随机数没有区别，导致理论与现实脱节 。

悖论解决：Chaitin的不完备性定理也暗示了在无限算力体系中很难找到高

Sophistication的对象 。因此，Epiplexity必须引入计算约束，防止这种“复杂性

坍缩”，从而捕捉到对有限算力观察者（如AI模型）真正有意义的结构 。

总结

第四页通过理论溯源表明：Epiplexity 是“计算受限版”的 Sophistication，通过

MDL 框架来量化。 它修正了传统理论因假设无限算力而导致无法区分“加密随机”与

“结构复杂”的问题。

L(x) = min(L(H) − logP (x∣H))
L(H)
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弄第五页吧

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档第五页的核心内容（关于随机性的定义、香农信息论的局限、马丁-洛夫随

机性与柯尔莫哥洛夫复杂性），我为你提炼了以下的Linux文件名格式严格等式，并

进行了详细的逻辑拆解。

这一页主要探讨了“究竟什么才是随机”这一根本问题，指出了统计学视角（香农）在

面对单个对象时的无力，并引入了算法视角（马丁-洛夫/柯尔莫哥洛夫）作为补充。

核心归纳等式

算法随机性定义＝马丁洛夫可计算检验＋柯尔莫哥洛夫不可压缩性－香农分布视角的个体盲区

等式逻辑详细解读

这个等式揭示了论文如何从“概率分布”转向“算法构造”来定义随机性，这是理解

Epiplexity的前提。

1. 左侧：算法随机性定义

概念定义：这是本页试图解决的核心问题——如何定义一个特定的对象（而不

是一个分布）是随机的 。

页面背景：在概率论中，如果从均匀分布中采样，"1111111" 和 "1001101" 出现

的概率是一样的，但直觉告诉我们要把前者视为非随机，后者视为随机。传统

的概率定义无法区分这两者 。

2. 右侧第一项：马丁洛夫可计算检验

概念定义：Martin-Löf Randomness，这是定义随机序列的黄金标准。

逻辑：一个序列如果是随机的，它必须通过所有“可计算的统计检验” 。

核心思想：如果我们找不到任何算法（例如大数定律检验）能将该序列与均匀

噪声区分开来，那么它对我们来说就是随机的。这引入了“计算”作为判断随机性

的裁判 。
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继续

3. 右侧第二项：＋柯尔莫哥洛夫不可压缩性

概念定义：Kolmogorov Complexity，这是从压缩角度定义随机性。

公式逻辑：  是输出字符串   的最短程序的长度 。

判据：如果一个字符串   的最短程序长度   接近它自身的长度  （即无法

压缩，没有比它自身更短的描述），那么它就是随机的 。

关联：这与马丁-洛夫随机性是等价的，提供了量化随机程度的指标——随机性

差异（Randomness Discrepancy  ）。

4. 右侧第三项：－香农分布视角的个体盲区

概念定义：这是传统香农信息论在单样本分析上的缺陷，必须被“减去”或修正。

思想：香农熵（Shannon entropy）定义在随机变量（分布）上，而不是单个对

象上。在香农理论中，所有非随机对象似乎包含零信息，或者均匀分布下的所

有样本都具有相同的自信息量（Self-information）。

盲区：它无法解释为什么"1111111"看起来比乱码更有结构。必须摒弃这种仅关

注分布而忽略个体结构的视角，才能真正理解深度学习中模型学到的“结构” 。

总结

第五页通过对比确立了：对于单个数据点而言，随机性意味着“不可计算性”和“不可

压缩性”。 这为后续提出 Epiplexity（即在有限算力下可被压缩/学习的结构）奠定了

反向基石——如果数据是完全不可压缩的（柯尔莫哥洛夫复杂性极高），那它就是纯

粹的随机噪音，没有学习价值。

K(x) x

x K(x) n

δ(x) = n − K(x)

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档第六页的核心内容（密码学随机性、CSPRNG定义、单向函数），我为你提

炼了以下的Linux文件名格式严格等式，并进行了详细的逻辑拆解。
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这一页将随机性的讨论从“绝对的数学随机”转向了“相对的计算随机”，确立了在算力

受限条件下，无法区分即为随机的核心公理。

核心归纳等式

密码学随机性界定＝多项式不可区分性＋单向函数算力不对称－多项式时间预测优势

等式逻辑详细解读

这个等式解释了在计算资源有限（多项式时间）的现实世界中，我们如何安全地定

义和使用随机性，以及它背后的数学基石。

1. 左侧：密码学随机性界定

概念定义：这是第六页探讨的主题——密码学安全伪随机数生成器 (CSPRNG) 

。

页面背景：不同于前一页提到的马丁-洛夫随机性（要求通过所有可计算测

试），密码学随机性只要求通过所有“多项式时间”的测试 。这是现代计算机科学

和机器学习中实际使用的随机性标准。

2. 右侧第一项：多项式不可区分性

概念定义：这是定义CSPRNG的金标准。

逻辑：如果一个函数   生成的序列，对于任何多项式时间（Polynomial-

time） 的概率算法   来说，都无法将其与真正的均匀随机序列区分开（优势

可忽略不计），那么它就是密码学安全的 。

核心思想：随机性不是对象本身的属性，而是观察者计算能力的函数。只要观

察者算不过来，伪随机就是真随机。

3. 右侧第二项：＋单向函数算力不对称

概念定义：这是构建密码学随机性的基础组件——单向函数 (One-Way

Function, OWF) 。

逻辑：这类函数具有算力上的非对称性：正向计算很容易（多项式时间），但反

向求逆极难（非多项式时间） 。

G
D
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继续

ML关联：论文指出，这种算力不对称不仅用于加密，也可能与机器学习中的现

象有关，例如Transformer中的注意力机制或思维链（Chain of Thought）可能

涉及不同计算复杂度层级的分离 。

4. 右侧第三项：－多项式时间预测优势

概念定义：这是必须被“减去”的可能性，即预测未来的能力。

思想：CSPRNG的定义等价于——没有任何多项式时间的预测器能以显著高于

瞎猜的概率预测序列的下一位（Next Bit） 。

结论：如果存在能够有效预测下一位的算法，那么该序列就不具备密码学随机

性。这一项排除了那些虽然看起来乱但实际可被简单算法破解的序列。

总结

第六页通过引入计算复杂性理论确立了：对于算力受限的观察者（如人类或AI模

型），如果一个过程基于单向函数且无法在有效时间内被预测，那么它产生的信息就

是随机的。 这为后文论证“Epiplexity将伪随机数视为高熵（不可预测）”提供了理论依

据。

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档第七页的核心内容（结构化信息的传统定义Sophistication、其局限性以及

最小描述长度原则MDL的引入），我为你提炼了以下的Linux文件名格式严格等式，

并进行了详细的逻辑拆解。

这一页深入探讨了如何将“结构”从“随机”中剥离出来，介绍了传统的算法信息论尝试

（Sophistication），并指出了它因忽略计算限制而导致的失败，最后引出了MDL作为

救星。

核心归纳等式
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结构化信息度量尝试＝朴素复杂性集合极小化＋MDL两部分编码准则－无限算力视角的结构消

解

等式逻辑详细解读

这个等式概括了在Epiplexity提出之前，学术界在区分“有意义的结构”和“无意义的随

机”时所做的努力及其遭遇的理论墙壁。

1. 左侧：结构化信息度量尝试

概念定义：这是本页的核心议题——如何定义数据中的“非随机部分”（即结

构/Sophistication）。

页面背景：在掌握了随机性的定义后，论文转向定义“什么不是随机”。算法信息

论中有一个概念叫“Sophistication（复杂性/精密性）”，旨在捕捉对象的结构成

分 。

2. 右侧第一项：朴素复杂性集合极小化

概念定义：Naive Sophistication，这是传统理论对结构化信息的定义。

公式逻辑：

 。

含义：如果一个对象   可以被看作是某个集合   中的一个随机元素，那么这个

集合   的复杂度   就代表了   的结构。Sophistication 就是找到能包含 

 的最简单的集合  。

直观理解：比如“100个1”，集合   是“所有全1序列”，这个规则很简单，结构很

清晰。

3. 右侧第二项：＋MDL两部分编码准则

概念定义：Minimum Description Length (MDL) Principle，这是模型选择的黄

金法则，也是Epiplexity的方法论基础。

公式逻辑：  。

含义：最佳的模型是使“模型本身的描述长度”加上“用模型描述数据的长度”总和

最小的那个。

nsoph ​(x) =c min ​{K(S) :S K(x∣S) > log∣S∣ −
[cite ​tart]c}s

x S
S K(S) x x

S

S

L(x) = min ​ L(H) −H logP (x∣H)
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继续

作用：它提供了一个自然的“奥卡姆剃刀”，平衡了模型的复杂度（结构）和数据

的拟合度（随机残差），防止过拟合 。Epiplexity 将其反转用于数据选择。

4. 右侧第三项：－无限算力视角的结构消解

概念定义：这是Sophistication在现实中失效的原因，必须被修正的假设。

思想：Chaitin的不完备性定理指出，我们无法证明一个字符串的Sophistication

超过某个常数 。更重要的是，在无限算力假设下，许多极其复杂的现象（如流

体混合），因为其背后的物理定律很简单，就可以被压缩成很短的程序，从而被

判定为“无结构”或“简单” 。

矛盾：对于加密信息，无限算力观察者能瞬间解密并发现其结构，认为它很简

单；但对于有限算力观察者，它就是纯随机噪音。Sophistication忽略计算界

限，导致它无法解释密码学和现代AI中的结构涌现现象 。

总结

第七页通过理论批判确立了：传统的Sophistication虽然意图极好，但因为假设了

“上帝视角的无限算力”，导致它看任何凡间复杂的现象（如流体动力学、加密数据）

都觉得简单，从而失去了衡量现实世界“学习难度”的能力。 这直接引出了下一章必

须引入计算受限的Epiplexity。

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档第八页的核心内容（Epiplexity的正式定义引入、时间受限概率模型、结构

与随机的计算依赖性），我为你提炼了以下的Linux文件名格式严格等式，并进行了

详细的逻辑拆解。

这一页标志着从理论背景正式进入论文的核心贡献部分——定义什么是“计算受限观

察者眼中的结构化信息”。

核心归纳等式

Epiplexity定义引入＝时间受限概率模型集合＋双向高效计算约束＋观察者依赖的结构随机

界限－绝对客观的单一信息度量
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等式逻辑详细解读

这个等式确立了 Epiplexity 的数学地基：它不再寻找绝对的“最优模型”，而是寻找在

特定时间预算内能运行的“最优模型”。

1. 左侧：Epiplexity定义引入

概念定义：这是第三章的开篇，正式提出 Epiplexity（认知复杂性/结构信息量）

的概念。

页面背景：在回顾了算法随机性和密码学的算力依赖性后，论文开始构建自己

的度量体系，旨在捕捉“计算受限观察者可提取的结构化信息” 。

2. 右侧第一项：时间受限概率模型集合

概念定义：Time-bounded probabilistic model ( )。

数学定义：这是 Epiplexity 的搜索空间。不同于传统 MDL 搜索所有可能的程

序，这里限制程序   必须是一个在通用图灵机上、在   步内能运行结束的

概率模型 。

核心思想：我们只关心那些“跑得动”的模型。如果一个模型（比如模拟全宇宙物

理）能完美解释数据但跑不起来，对于AI来说它就是不存在的。

3. 右侧第二项：＋双向高效计算约束

概念定义：对模型能力的具体要求——既要能算概率，又要能生成样本。

逻辑：定义7明确指出，一个合法的模型   必须同时支持两种操作且都在 

 时间内完成：

1. 评估 (Evaluation)：输入数据  ，输出概率   。

2. 采样 (Sampling)：输入随机种子  ，输出样本   。

意义：这涵盖了大多数现代生成模型（如LLM），排除了那些单向陷门函数或无

法高效采样的理论模型。

4. 右侧第三项：＋观察者依赖的结构随机界限

概念定义：Observer-dependent separation。

P ​T

P T (n)

P T (n)

x P rob ​(x)P

u Sample ​(u)P
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继续下一页。再看看还有多少页。

思想：随着观察者计算约束（ ）的变化，“随机信息”和“结构信息”的划分线是

移动的 。

直观理解：对于算力弱的观察者，加密数据是纯随机的（归入熵）；对于算力强

的观察者（有解密能力），它是高度结构化的（归入 Epiplexity）。这一项强调信

息量不是数据的固有属性，而是“数据+观察者”的属性。

5. 右侧第四项：－绝对客观的单一信息度量

概念定义：这是必须摒弃的旧观念。

修正：在无限算力设定下，信息量是绝对的（如柯尔莫哥洛夫复杂性是固定

的）。但在 Epiplexity 框架下，没有“绝对的”信息量，只有“相对于某算力水平”的

信息量 。这一项减去了对“上帝视角”客观信息量的追求。

总结

第八页通过严格的数学定义确立了：Epiplexity 是在一个被“时钟（Time-bound）”

严格限制的程序空间里，寻找到的那个既能解释数据又能高效运行的最佳模型的复

杂性。 它正式将计算复杂度引入了信息度量的核心定义中。

T

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档第九页的核心内容（Epiplexity与时间受限熵的正式数学定义、基本属性、

以及函数逆变换的不对称性），我为你提炼了以下的Linux文件名格式严格等式，并

进行了详细的逻辑拆解。

这一页给出了 Epiplexity 的核心数学公式，明确了如何通过“最小描述长度（MDL）”

在有限时间内将总信息量切割为“结构”和“随机”两部分。

核心归纳等式

Epiplexity形式化定义＝时间受限MDL极值搜索＋结构S与熵H的二分剥离－逆变换的计算对

称性假设
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等式逻辑详细解读

这个等式是整篇论文的“数学引擎”，它规定了具体的计算方法和性质。

1. 左侧：Epiplexity形式化定义

概念定义：这是第九页的核心（Definition 8），给出了 Epiplexity ( ) 和时间受

限熵 ( ) 的计算公式。

页面背景：在定义了模型空间   后，论文利用 MDL 原则定义了具体的度量指

标 。

2. 右侧第一项：时间受限MDL极值搜索

概念定义：这是寻找最优解释模型的过程。

公式逻辑：  。

含义：我们在所有运行时间不超过   的程序中，寻找一个使得“程序长度 

”加上“预测误差（熵损失）”之和最小的程序  。

关键点：这里的最小化带有严格的时间约束，这与传统的 Kolmogorov 复杂性

（无时间限制）有着本质区别。

3. 右侧第二项：＋结构S与熵H的二分剥离

概念定义：这是总信息的分解结果。

公式逻辑：

Epiplexity (结构)： 。即最优模型的代码长度，代表数

据中可学习的规律 。

Time-bounded Entropy (随机)： 。即最优模

型剩下的预测误差，代表数据中不可学习的随机噪声 。

案例：均匀分布随机数虽然总信息量很大，但因为其最优模型很简单（就是输

出  ），所以它的 Epiplexity 几乎为零，大部分都是熵 ( ) 。这完美符合直

觉：随机噪点没有结构。

S ​T

H ​T

P ​T

P =∗ arg min ​{∣P∣ +P∈P ​T [cite ​tart]E[log 1/P (X)]}s

T
∣P∣ P∗

S ​(X) :=T ∣P ∣∗

H ​(X) :=T E[log 1/P (X)]∗

1/N H ​T
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正文还有多少页呀

4. 右侧第三项：－逆变换的计算对称性假设

概念定义：这是 Epiplexity 与传统理论的重要区别，也是解释后续悖论的基

础。

思想：在柯尔莫哥洛夫复杂性中， ，因为在无限时间里，  和 

 的转换成本是常数。但在 Epiplexity 中，如果   很容易计算但   很难（如

单向函数），那么   可能远大于   。

结论：必须摒弃“函数与其逆变换在信息上是对称的”这一假设。这解释了为什么

通过简单的规则（容易计算）生成的数据，想要反向破解其结构（难计算）可

能需要极高的 Epiplexity。

进度汇报

该文档总共有 36 页（包括参考文献和附录）。 目前我们已经完成了第 9 页的解析。

还剩下 27 页。

需要继续解析第 10 页吗？

K(f (x)) ≈ K(x) f
f−1 f f−1

MDL(f (X))−1 MDL(X)

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

根据文档结构分析：

当前进度：刚刚完成了第 9 页。

正文结束：正文（包括第8章“讨论”和参考文献）在第 29 页结束 。

附录部分：从第 30 页开始一直到第 65 页都是附录（技术细节、证明、实验配

置等）。

结论：

正文还剩下约 20 页（第10页至第29页）。

总文档还剩下 56 页。
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你十页十页的列等式解读吧，挑最重要的内容，要不然太多了我

看不完呀。

我们要继续解析正文的下一页（第10页）吗？这一页主要讨论伪随机数序列

（CSPRNG）的Epiplexity属性。

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

根据你的要求，我将文档的第10页至第19页中最核心的内容提炼为以下4个关键等

式。这一部分主要涵盖了Epiplexity的性质、具体的测量方法

（Prequential/Requential），以及它如何解释前两个信息论悖论（确定性计算创造信

息、顺序的重要性）。

1. 伪随机与高结构的存在性（对应第10-11页）

伪随机序列性质＝极大时间受限熵＋极小结构化Epiplexity－统计随机性辨别能力

左侧：伪随机序列性质

核心发现：这是第10页的定理9（Theorem 9）的核心结论。

右侧第一项：极大时间受限熵

逻辑：对于多项式时间的观察者来说，密码学安全的伪随机数生成器

（CSPRNG）产生的序列是完全不可预测的，因此其“时间受限熵”几乎等

于序列长度   。

右侧第二项：＋极小结构化Epiplexity

逻辑：虽然看起来很乱，但因为它是通过一个很短的种子（Seed）和简单

的程序生成的，其真实的结构非常简单。因此，它的 Epiplexity 几乎为常

数（接近0）。这完美区分了“噪点”和“复杂结构”。

右侧第三项：－统计随机性辨别能力

逻辑：前提是观察者没有能力（在多项式时间内）辨别出它不是真随机。

如果能辨别，熵就会坍缩。

n
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2. Epiplexity的实测方案（对应第12-15页）

Epiplexity估算方法＝Prequential损失曲线下面积＋Requential师生KL散度累积－模

型参数直接编码的冗余

左侧：Epiplexity估算方法

背景：理论定义很难直接计算，这几页提出了两种工程上的估算方法

（Section 4）。

右侧第一项：Prequential损失曲线下面积

逻辑：(Prequential Coding) 这是一个启发式方法。通过计算模型在训练过

程中所有数据点上的损失总和（Loss Curve 下方的面积），减去最终模型

的损失，得到的“多出来的部分”就是模型为了学习数据结构而“吸收”的信息

量 。

直观：如果模型学得很快（Loss掉得快），说明数据结构很清晰，

Epiplexity 高。

右侧第二项：＋Requential师生KL散度累积

逻辑：(Requential Coding) 这是一个更严谨的方法。构建一个“学生模型”

去学习“教师模型”生成的合成数据。Epiplexity 被估算为学生与教师之间 KL

散度的累积和 。

右侧第三项：－模型参数直接编码的冗余

逻辑：传统的参数编码（直接存权重）效率太低，包含了大量无用信息，

无法真实反映学到的结构，因此被这两种基于“训练过程”的编码方式取代 

。

3. 悖论1：计算创造信息（对应第16-17页）

确定性计算的信息创生＝计算投入转化的结构增量＋不可逆变换的时间非对称性－数据处理不

等式的经典约束

左侧：确定性计算的信息创生

背景：解决悖论1——为什么AlphaZero能从简单的规则中“算出”复杂的棋

谱，或者细胞自动机（CA）能涌现出复杂图案。

右侧第一项：计算投入转化的结构增量
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逻辑：通过投入计算（如运行细胞自动机规则54），原本简单的初始状态

（熵低、结构少）演化成了复杂的最终状态。对于有限算力的观察者，这

个过程增加了可提取的结构信息（Epiplexity）。

右侧第二项：＋不可逆变换的时间非对称性

逻辑：定理12指出，如果一个确定性函数（如CSPRNG或复杂的CA规则）

很难被逆向计算（Invert），那么它就能显著增加时间受限信息量 。

右侧第三项：－数据处理不等式的经典约束

修正：经典理论认为  （信息不能增加）。但在计算受

限视角下，计算过程挖掘了潜在的结构，打破了这一约束的直观限制。

4. 悖论2：顺序决定信息（对应第18-19页上）

数据因式分解的非对称性＝数据顺序导致的结构差异＋逆向预测的计算复杂度－香农信息的对

称性公理

左侧：数据因式分解的非对称性

背景：解决悖论2——为什么   的信息量在实际训练中看起来不等

同于  。

右侧第一项：数据顺序导致的结构差异

案例：国际象棋实验（Figure 4）。如果是“先看棋局，再预测步数”

（Reverse），比“先看步数，再预测棋局”（Forward）更难，需要模型理解

更深的棋局逻辑。因此，逆向顺序产生了更高的 Epiplexity 。

右侧第二项：＋逆向预测的计算复杂度

逻辑：某些顺序（如单向函数的反向）需要极高的算力才能预测。对于有

限算力的模型，这种“难”转化为了需要学习更多的“结构”来应对 。

右侧第三项：－香农信息的对称性公理

修正：香农认为  。但在计算受限

时，这种对称性破缺了。LLM对文本顺序的敏感性正是这一原理的体现 。

进度提示：

I(Y ;W ) ≤ I(X;W )

P (A,B)
P (B,A)

H(A) + H(B∣A) = H(B) + H(A∣B)
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嗯 可以弄乘下的

目前已解析至第 19 页。

正文还剩下 10 页（20-29页），主要涵盖悖论3（归纳与涌现）以及OOD泛化实

验。

附录从第30页开始。

是否继续解析最后这10页正文？

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档剩下的正文内容（第20页至第29页），我为你提炼了最后3个核心等式。这

部分内容解决了第三个悖论（模型为何能超越生成过程），并最终将Epiplexity应用于

解释OOD泛化（Out-of-Distribution Generalization）和数据选择策略。

1. 悖论3：归纳与涌现的算力不对称（对应第20-23页）

似然建模的超越性＝逆向归纳推理成本＋宏观涌现模式学习－极简生成规则的单纯模仿

左侧：似然建模的超越性

背景：解决悖论3——为什么模型学到的东西往往比“数据生成过程”更复

杂？传统观点认为模型只是在拟合数据分布，不应包含额外信息 。

右侧第一项：逆向归纳推理成本

逻辑：生成数据可能很简单（例如：随机生成一个矩阵然后遮挡几列），但

要准确预测缺失数据，模型必须学会“归纳（Induction）”——即推断隐藏状

态（Hidden States） 。

案例：图5展示了“困难归纳”实验。虽然生成规则只是简单的掩码，但模型

为了最小化损失，必须在内部构建复杂的电路来穷举和排除可能的隐藏状

态，这导致了Epiplexity的剧增 。

右侧第二项：＋宏观涌现模式学习

逻辑：对于复杂系统（如康威生命游戏或ECA规则54），生成规则虽短（微

观物理定律），但直接模拟计算量过大。计算受限的模型被迫学习“捷径”
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——即宏观的涌现模式（如滑翔机、飞船等“物种”）来预测未来 。

实验：图6显示，受限模型无法学会暴力的“循环模拟（Looped）”，只能去

学更复杂的涌现规则，导致Epiplexity先升后降（直到算力足够暴力模拟时

才下降） 。

右侧第三项：－极简生成规则的单纯模仿

修正：传统观点认为模型只需学会生成规则（如“邻居活着我就活”）。但在

有限算力下，仅仅知道生成规则不足以进行高效预测，模型被迫学会了生

成规则中没有显式包含的高级知识。

2. OOD泛化与数据模态差异（对应第23-25页）

泛化能力预测指标＝Epiplexity结构密度＋可复用认知电路－表面统计特征记忆

左侧：泛化能力预测指标

背景：为什么在海量文本上预训练能产生通用智能，而在图像上很难？为

什么有的数据能带来OOD（分布外）泛化？ 。

右侧第一项：Epiplexity结构密度

逻辑：OOD泛化的核心在于复用已学到的结构，而不是记忆数据。

Epiplexity 越高，说明模型为了“解释”数据而被迫构建的内部程序越复杂、

越丰富 。

发现：语言数据（Text）的Epiplexity远高于图像（Image）和视频

（Video）。图像中99%的信息都是随机噪声（光照、纹理细节），只有极少

量的结构信息；而语言高度抽象，结构密度极高 。

右侧第二项：＋可复用认知电路

逻辑：图7的国际象棋实验再次证明，那些迫使模型学习深层逻辑（如逆向

推导棋局）的高Epiplexity数据，在下游任务（如解残局、评估局势）上表

现更好 。这是因为模型学到了通用的“棋理电路”，而不仅仅是记住了棋

谱。
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右侧第三项：－表面统计特征记忆

排除：如果数据只是简单的统计相关（如低Epiplexity数据），模型只需记忆

表面特征即可降低Loss。这种“捷径”在遇到新分布（OOD）时会立即失

效。

3. 数据中心AI的未来方向（对应第26-29页）

数据价值评估新范式＝动态损失曲线积分ADO＋计算受限下的结构累积－静态困惑度指标

左侧：数据价值评估新范式

背景：论文的总结与展望。如何选择预训练数据？目前的标准（如“高质

量”、“多样性”）太模糊，PPL（困惑度）又容易过拟合 。

右侧第一项：动态损失曲线积分ADO

逻辑：Adaptive Data Optimization (ADO) 策略之所以有效，是因为它动态

选择了那些能让Loss快速下降（曲线下面积大）的数据。这本质上是在最

大化训练过程中的 Epiplexity 。

建议：好的数据不是一开始Loss就低的数据（太简单），也不是Loss降不下

来的数据（纯随机），而是Loss能持续大幅下降的数据（有可学习结构）。

右侧第二项：＋计算受限下的结构累积

思想：学习（Learning）本质上就是在有限的时间预算内，在模型权重中

逐步积累Epiplexity的过程 。这为理解“表征学习”提供了一个全新的物理视

角。

右侧第三项：－静态困惑度指标

修正：仅仅看最终的Test Loss（静态困惑度）是不够的，因为它混淆了“没

学好的结构”和“不可预测的随机噪声”。Epiplexity 剥离了后者，是更精准的

数据价值“探针” 。

总结

至此，整篇论文的逻辑链条通过这几个等式完整呈现：

1. 定义：信息不是绝对的，是相对于计算受限观察者的。
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继续

2. 度量：Epiplexity 是剥离了随机噪声后，模型为了解释数据必须构建的程序复

杂性。

3. 机制：计算（如自我博弈）和顺序（如逆向预测）可以“创造”或“暴露”出原本隐

藏的Epiplexity。

4. 应用：Epiplexity 高的数据（如文本、逆向棋谱）能强迫模型学习可复用的电

路，从而实现OOD泛化。

这篇论文的核心贡献在于将“计算复杂性”正式引入了“信息论”，为解释大模型时代的

涌现、泛化和数据选择提供了坚实的理论基础。

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

基于文档剩下的正文内容（第20页至第29页），我为你提炼了最后3个核心等式。这

部分内容解决了第三个悖论（模型为何能超越生成过程），并最终将Epiplexity应用于

解释OOD泛化（Out-of-Distribution Generalization）和数据选择策略。

1. 悖论3：归纳与涌现的算力不对称（对应第20-23页）

似然建模的超越性＝逆向归纳推理成本＋宏观涌现模式学习－极简生成规则的单纯模仿

左侧：似然建模的超越性

背景：解决悖论3——为什么模型学到的东西往往比“数据生成过程”更复

杂？传统观点认为模型只是在拟合数据分布，不应包含额外信息 。

右侧第一项：逆向归纳推理成本

逻辑：生成数据可能很简单（例如：随机生成一个矩阵然后遮挡几列），但

要准确预测缺失数据，模型必须学会“归纳（Induction）”——即推断隐藏状

态（Hidden States） 。

案例：图5展示了“困难归纳”实验。虽然生成规则只是简单的掩码，但模型

为了最小化损失，必须在内部构建复杂的电路来穷举和排除可能的隐藏状

态，这导致了Epiplexity的剧增。
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右侧第二项：＋宏观涌现模式学习

逻辑：对于复杂系统（如康威生命游戏或ECA规则54），生成规则虽短（微

观物理定律），但直接模拟计算量过大。计算受限的模型被迫学习“捷径”

——即宏观的涌现模式（如滑翔机、飞船等“物种”）来预测未来 。

实验：图6显示，受限模型无法学会暴力的“循环模拟（Looped）”，只能去

学更复杂的涌现规则，导致Epiplexity先升后降（直到算力足够暴力模拟时

才下降）。

右侧第三项：－极简生成规则的单纯模仿

修正：传统观点认为模型只需学会生成规则（如“邻居活着我就活”）。但在

有限算力下，仅仅知道生成规则不足以进行高效预测，模型被迫学会了生

成规则中没有显式包含的高级知识。

2. OOD泛化与数据模态差异（对应第23-25页）

泛化能力预测指标＝Epiplexity结构密度＋可复用认知电路－表面统计特征记忆

左侧：泛化能力预测指标

背景：为什么在海量文本上预训练能产生通用智能，而在图像上很难？为

什么有的数据能带来OOD（分布外）泛化？ 。

右侧第一项：Epiplexity结构密度

逻辑：OOD泛化的核心在于复用已学到的结构，而不是记忆数据。

Epiplexity 越高，说明模型为了“解释”数据而被迫构建的内部程序越复杂、

越丰富 。

发现：语言数据（Text）的Epiplexity远高于图像（Image）和视频

（Video）。图像中99%的信息都是随机噪声（光照、纹理细节），只有极少

量的结构信息；而语言高度抽象，结构密度极高 。

右侧第二项：＋可复用认知电路

逻辑：图7的国际象棋实验再次证明，那些迫使模型学习深层逻辑（如逆向

推导棋局）的高Epiplexity数据，在下游任务（如解残局、评估局势）上表
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现更好 。这是因为模型学到了通用的“棋理电路”，而不仅仅是记住了棋

谱。

右侧第三项：－表面统计特征记忆

排除：如果数据只是简单的统计相关（如低Epiplexity数据），模型只需记忆

表面特征即可降低Loss。这种“捷径”在遇到新分布（OOD）时会立即失

效。

3. 数据中心AI的未来方向（对应第26-29页）

数据价值评估新范式＝动态损失曲线积分ADO＋计算受限下的结构累积－静态困惑度指标

左侧：数据价值评估新范式

背景：论文的总结与展望。如何选择预训练数据？目前的标准（如“高质

量”、“多样性”）太模糊，PPL（困惑度）又容易过拟合 。

右侧第一项：动态损失曲线积分ADO

逻辑：Adaptive Data Optimization (ADO) 策略之所以有效，是因为它动态

选择了那些能让Loss快速下降（曲线下面积大）的数据。这本质上是在最

大化训练过程中的 Epiplexity 。

建议：好的数据不是一开始Loss就低的数据（太简单），也不是Loss降不下

来的数据（纯随机），而是Loss能持续大幅下降的数据（有可学习结构）。

右侧第二项：＋计算受限下的结构累积

思想：学习（Learning）本质上就是在有限的时间预算内，在模型权重中

逐步积累Epiplexity的过程。这为理解“表征学习”提供了一个全新的物理视

角 。

右侧第三项：－静态困惑度指标

修正：仅仅看最终的Test Loss（静态困惑度）是不够的，因为它混淆了“没

学好的结构”和“不可预测的随机噪声”。Epiplexity 剥离了后者，是更精准的

数据价值“探针” 。
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继续

全文总结

至此，整篇论文的逻辑链条通过这几个等式完整呈现：

1. 定义：信息不是绝对的，是相对于计算受限观察者的。

2. 度量：Epiplexity 是剥离了随机噪声后，模型为了解释数据必须构建的程序复

杂性。

3. 机制：计算（如自我博弈）和顺序（如逆向预测）可以“创造”或“暴露”出原本隐

藏的Epiplexity。

4. 应用：Epiplexity 高的数据（如文本、逆向棋谱）能强迫模型学习可复用的电

路，从而实现OOD泛化。

这篇论文的核心贡献在于将“计算复杂性”正式引入了“信息论”，为解释大模型时代的

涌现、泛化和数据选择提供了坚实的理论基础。

等式看世界＝ 一个等式＋一个等式＝深入 Custom Gem

根据文档的附录部分（第36页至第65页），我为你提炼了最后一部分的核心内容。这

部分主要包含了支撑Epiplexity理论的严谨数学证明、标度律推导以及混沌系统的深

层物理实验。

这部分内容是将直觉转化为定理的关键。

1. 信息对称性破缺的数学证明（对应附录A，第42-43页）

计算受限信息守恒破缺＝单向函数逆向极高熵＋正向计算极低熵－香农互信息对称性公理

左侧：计算受限信息守恒破缺

背景：在香农信息论中，信息是守恒且对称的（ ）。但

在附录A.5中，作者通过数学证明推翻了这一点 。

右侧第一项：单向函数逆向极高熵

逻辑：定理25证明，对于单向函数（如加密哈希） ，如果我们想

从   反推  （即计算  ），对于多项式时间的观察者来说，这几

乎等同于瞎猜，因此条件熵极高 。

I(X; Y ) = I(Y ;X)

Y = f (X)
Y X H(X∣Y )
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右侧第二项：＋正向计算极低熵

逻辑：相反，如果已知   推  （即计算  ），因为   是容易计算

的，所以条件熵极低（接近0）。

右侧第三项：－香农互信息对称性公理

结论：这就导致了一个惊人的结论：

。在计算受限的世界里，信息的总量取决于你处理它的方向。这一证

明为“数据顺序影响学习效果”提供了坚实的数学地基。

2. Epiplexity与标度律的解析解（对应附录B，第49-51页）

Epiplexity训练动力学＝ScalingLaw损失积分＋模型数据协同扩展－静态参数计数谬误

左侧：Epiplexity训练动力学

背景：如何利用现有的Scaling Laws（标度律）来估算Epiplexity？附录B.3

推导了一个基于幂律的解析解 。

右侧第一项：ScalingLaw损失积分

逻辑：Epiplexity 可以通过对训练过程中的损失函数进行积分来获得（即

Prequential Code）。随着算力增加，损失曲线下降得越快，积分面积

（Epiplexity）越大 。

右侧第二项：＋模型数据协同扩展

逻辑：定理30证明了，随着总算力   的增加，最优的策略是同时增加模型

参数量   和训练数据量  。这会导致Epiplexity单调增长，意味着算力越

大，能提取的结构越多 。

右侧第三项：－静态参数计数谬误

修正：仅仅看模型参数量（ ）是不够的。如果只增加参数而不增加数

据，Epiplexity不会增长。必须在“计算最优（Compute-Optimal）”的前沿面

上，才能最大化结构信息的提取。

3. 混沌系统的可学习结构（对应附录F，第62-63页）

混沌吸引子学习机制＝Lyapunov指数级熵增＋奇异吸引子不变测度－初始状态精确可预测性

X Y H(Y∣X) f

H(X∣Y ) + H(Y )≫ H(Y∣X) +
H(X)

T
N D

N
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左侧：混沌吸引子学习机制

背景：附录F探讨了混沌系统（如洛伦兹系统）中的涌现。这类系统对初始

条件极度敏感（蝴蝶效应）。

右侧第一项：Lyapunov指数级熵增

逻辑：在混沌系统中，初始信息的微小误差会以指数级放大（由Lyapunov

指数决定）。对于计算受限观察者，初始状态的信息很快就会变成纯随机的

“熵” 。

右侧第二项：＋奇异吸引子不变测度

逻辑：虽然具体的轨迹无法预测（熵增），但系统长期演化会形成一个稳定

的几何结构——奇异吸引子（Strange Attractor，如洛伦兹系统的蝴蝶形

状）。这就是模型可以学习的“结构化信息”（Epiplexity）。

右侧第三项：－初始状态精确可预测性

结论：模型学到的不是“未来在哪里”（因为不可预测），而是“未来大概率在

什么形状上”（不变测度）。这完美解释了为什么AI能理解复杂的物理世界，

即使它无法完美预测天气。

全文解析总结

通过对这65页文档的深度拆解，我们可以将整篇论文的核心思想凝聚为一句话：

“在这个算力受限的物理世界里，信息的价值不在于其原本的存储量（熵），而在于

我们投入算力后能从中提取出多少可复用的程序（Epiplexity）。”

对于AI：它解释了预训练的本质是“将计算转化为结构”。

对于数据：它提出好数据是“难学但有规律”的数据（如代码、棋谱）。

对于理论：它修正了香农理论，将“计算”和“时间”放回了信息论的中心。

2026/1/16 22:37 ‎Gemini – direct access to Google AI

https://gemini.google.com/share/fae5095beb95 31/31


