


元数学的物理化：Ruliad 理论、异类数学与自动证明的疆界

1. 绪论：计算宇宙中的抽象实在
数学史长期以来被视为一种以人类为中心的累积性事业——一种通过人类思维的特
定认知透镜，逐渐发现有效存在于柏拉图领域的“真理”的过程。然而，随着简单程
序研究的深入以及 Ruliad（规则万有论）概念框架的提出，这种人类中心主义的观
点正面临前所未有的挑战。本报告旨在提供一份详尽的分析，探讨新兴的 经验元数
学（Empirical Metamathematics） 领域、异类数学（Alien Mathematics） 的
理论存在性与本质，以及使我们能够探索这些非人类智力景观的 自动定理证明
（Automated Theorem Proving, ATP） 的严格机械过程。

本次调查的核心是由 Stephen Wolfram 提出的 Ruliad 概念，这是一个被定义为所
有可能计算过程的纠缠极限的结构 。如果物理学代表了人类观察者所栖息的 Ruliad
特定切片所遵循的规律，那么数学——具体而言是我们历史上选择研究的公理系统
和定理——则代表了对一个更广阔、更“异类”的可能性空间的类似受限采样。对这
一空间的公理化需要超越传统的直觉，并采用计算代理——自动定理证明器——来
穿越人类直觉无法触及的“蕴涵锥（Entailment Cone）”区域。   

本报告综合了现代自动证明系统的技术架构，特别是 Wolfram 语言中开发的一阶等
式逻辑框架，以及从计算宇宙中“挖掘”新数学真理的哲学与经验意义。报告进一步
对比了数学的形式主义、“机器代码”视角与 David Bessis 等数学家所倡导的直觉主
义视角，并分析了人工智能（AI）在掌握这些封闭——或者可能是无限——系统中
的潜在角色，正如 Geoffrey Hinton 所预见的那样。

通过对 2017 年自动定理证明实验的回顾、对“异类”公理系统的枚举分析，以及对
证明图中“概念路标（Conceptual Waypoints）”的算法识别，我们试图构建一幅完整
的元数学图景。这不仅是对数学基础的重新审视，更是对人类智能在计算宇宙中位

置的重新定位。

2. 理论基质：Ruliad 与元数学空间
要理解“异类数学”，首先必须定义它所居住的领土。传统数学假设一套公理——如
皮亚诺算术（Peano Arithmetic）或策梅洛-弗兰克尔集合论（ZFC）——作为基础
真理或至少是公理化的起点。相比之下，计算范式将这些公理系统视为更大结构中

的任意坐标。



2.1 作为纠缠极限的 Ruliad

Ruliad 被定义为所有可能计算过程的纠缠极限所形成的唯一对象 。它包含每一个可
能的规则、每一个可能的初始条件以及每一个可能的演化历史。在这个框架中，“真
理”不是一种单一的属性，而是多路图（Multiway Graph）中遍历的路径依赖特
征。   

这种结构的普遍性源于 计算等价性原理（Principle of Computational
Equivalence）。该原理暗示，Ruliad 并非仅仅是不同系统的集合，而是一个统一
的结构，其中几乎所有非平凡的局部行为在计算上都是等价的 。这意味着，无论我
们从图灵机、元胞自动机还是字符串重写系统出发，最终触及的都是同一个深层结

构。   

多路系统的概念至关重要。与遵循单一时间线的确定性元胞自动机不同，Ruliad 包
含所有分支的可能性。在这种语境下，一个“定理”连接多路图中的两个状态（表达
式）的路径。而“证明”则是对该路径的遍历 。因此，数学不再是创造，而是对
Ruliad 中既存路径的发现。   

2.2 元数学空间与人类聚落

元数学空间是数学理论居住的抽象空间。就像物理空间包含物质和能量一样，元数

学空间包含公理、定理和证明。在这个浩瀚的空间中，“人类聚落”聚集在特定的、
历史上偶然的公理系统周围（例如布尔代数、欧几里得几何）。这些聚落代表了可

用领土中极小的一部分 。   

这种空间的探索被称为 经验元数学（Empirical Metamathematics）。经验元数学
不再假设人类推导出的公理具有首要地位，而是将公理系统视为可被枚举和分析的

数据点。通过生成数以千计的随机或系统枚举的公理系统（“荒野中的公理系统”），
研究人员可以独立于人类偏见来观察“真理”和“可证明性”的统计属性 。   

这种视角的转变揭示了一个事实：我们所熟知的数学可能只是无数种可能性中的一

种“方言”。这就引出了“异类数学”的概念——即由那些具有根本不同认知或物理限制
的观察者所构建的数学系统。它们可能位于元数学空间中极其遥远的区域，由我们

在地球历史上未曾探索的公理所定义。

2.3 观察者理论与粗粒化

Wolfram 的理论进一步指出，我们所感知的“数学”实际上是由我们作为观察者的本
质所塑造的。人类观察者具有两个不可避免的特征：



1. 计算有界性（Computational Boundedness）： 我们无法处理无限的信息；
我们必须依赖摘要和粗粒化（Coarse-graining）。

2. 单一时间线索（Single Thread of Time）： 我们认为自己是穿越时间的持久
实体，这迫使我们将 Ruliad 的分支多路图解释为单一的、连贯的叙事 。   

这两个特征决定了我们如何对 Ruliad 进行“采样”。就像我们在物理学中通过粗粒化
分子运动来感知流体动力学一样，在数学中，我们通过粗粒化底层的形式推导（机

器代码层面的证明）来感知高层的数学概念（如“整数”或“群”）。因此，物理定律和
数学定律在深层机制上是同源的——它们都是计算有界观察者对 Ruliad 结构的感知
产物 。   

3. 自动推理的架构：定理证明的技术机制
探索元数学空间的载体是自动定理证明器（ATP）。虽然人类数学家依赖直觉和“概
念路标”，但机器在句法“分子动力学”的层面上运作。以下分析详细介绍了 Wolfram
语言的  FindEquationalProof  及其相关框架中采用的具体机制，这些机制主要由
包括 Jonathan Gorard 在内的研究人员开发 。   

3.1 一阶等式逻辑的领域

这种探索的主要领域是 一阶等式逻辑（First-Order Equational Logic）。这是标准
一阶逻辑的一个限制版本，仅允许全称量词（ ），并利用等式（ ）作为唯一的谓

词 。   

尽管有这些限制，等式逻辑具有图灵完备性，能够编码基本上所有的代数理论，包

括：

群论（Group Theory）

环论（Ring Theory）

布尔代数（Boolean Algebra，特别是通过 NAND 算子）

格论（Lattice Theory）

将领域限制在等式逻辑是一种追求效率的战略选择。全一阶逻辑中的归结定理证明

（Resolution Theorem Proving）在探索深度蕴涵锥时往往计算成本过高。通过限
制在等式范围内，系统可以利用源自泛代数（Universal Algebra）的专用高性能算
法 。   
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3.2 Knuth-Bendix 完成算法

FindEquationalProof  的核心引擎是 Knuth-Bendix 完成算法（Knuth-Bendix
Completion Algorithm）（通常是“无失败”变体，Unfailing Completion）。该算法解
决了自动证明的根本困难：任意重写系统中缺乏 汇合性（Confluence） 的问题 
。   

3.2.1 汇合性问题与重写系统

从元数学的角度来看，公理   可以被视为一对重写规则：  或 
。在一个具有 汇合性（或称 Church-Rosser 属性）的系统中，重写规则应用于项
的顺序不会影响最终的“规范形式（Normal Form）”。如果一个系统是汇合的且强规
范化（Strongly Normalizing，意味着所有重写最终都会终止），那么证明定理 

 就变得微不足道：只需将   和   简化为它们的规范形式。如果规范形式相同，
则定理为真 。   

然而，大多数原始的数学公理系统 并非 天然具备汇合性。项   可能被规则 1 重写
为  ，被规则 2 重写为  ，且没有明显的路径将   和   重写为共同的形式。这种
路径的分叉创造了歧义，使得证明过程陷入僵局。

3.2.2 临界对与引理生成

为了强制实现汇合性，Knuth-Bendix 算法识别 临界对（Critical Pairs）。当两个不
同的规则（或同一规则在不同位置应用）可以应用于同一个项，产生分歧时，就会

出现临界对。

设规则   将   映射到  。

设规则   将   映射到  。

那么   就是一个临界对。

算法检查   和   是否可以重写为共同的项（收敛）。如果不能，算法就会创建一个
新规则（一个 引理 Lemma），声明  ，并将其添加到系统中。这个新规则在

分歧路径之间架起了一座“桥梁”，人为地强制系统趋向汇合 。   

这一过程是自动推理的核心“创造性”步骤。机器不仅仅是在搜索现有的路径，它还
在通过生成引理来 构建 路径。在 Ruliad 的视角下，这相当于在多路图中识别分支
并确立它们的等价性。
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3.2.3 不定完成与不可判定性

由于停机问题是不可判定的（这是哥德尔和图灵定理的推论），Knuth-Bendix 过程
并不保证终止。它可能会生成无限的临界对序列。然而，对于许多“人类”数学理
论，甚至是复杂的“异类”理论，该过程在实践中往往能足够快地收敛或找到证明路
径 。这种“无失败完成”（Unfailing Completion）策略允许算法在系统永远无法完全
汇合的情况下，仍然有效地证明特定定理。   

3.3 Skolemization 与全一阶逻辑

虽然等式逻辑是核心，但在 12.1 版本之后的进展允许处理涉及存在量词（ ）的

全一阶逻辑陈述。这是通过 Skolemization 实现的 。   

量词消除： 存在量词被“Skolem 函数”所取代。例如，  变成了 
，其中   是一个为每个   生成有效   的函数。

等满足性（Equisatisfiability）： Skolem 化后的陈述在严格语义上并不等同
于原始陈述，但它们是 等满足 的。如果 Skolem 化版本导致矛盾（或证明），
原始陈述也具有相同的真值。这使得高效的等式引擎能够处理逻辑三段论（例

如“苏格拉底会死”）。   

3.4 模型论证伪

纯句法证明器的一个主要局限是无法有效证伪那些导致无限搜索空间的错误猜想。

为了解决这个问题，该框架包含了模型论功能

（ FindEquationalCounterExample ）。

语义解释： 系统为抽象算子分配具体的计算定义。例如，在群论猜想中，算
子   可能被解释为模 2 加法。

反例搜索： 系统搜索小型有限模型空间（例如大小为 2、3 或 4 的乘法表）。
如果找到一个模型，其中公理成立但猜想失败，则该猜想立即被证伪，从而绕

过了无限的句法搜索 。   

4. 经验元数学：枚举、发现与“2017 年实验”
经验元数学将科学方法应用于数学本身。它不将数学视为静态的知识体，而是将其

视为计算宇宙中可观察的自然现象。这一领域的关键进展往往依赖于大规模的计算

实验。

∃
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4.1 2017 年自动定理证明实验

虽然文献中并未将单一事件正式命名为“2017 年实验”，但 Jonathan Gorard 在
2017 年 Wolfram 夏校项目中的工作，以及随后的开发，构成了这一领域的关键节
点 。该项目旨在扩展  FullSimplify  的后端，构建一个能够自动生成和可视化一
阶等式逻辑定理证明的系统。   

实验的具体内容与方法论：

目标： 将自动证明从单纯的“真/假”判断扩展为生成人类可读的结构化证明。

算法概括： Gorard 推广了 Knuth-Bendix 算法，使其不仅适用于群论等特定领
域，还能自动生成基于任何有限公理系统的抽象证明网络 。   

布尔代数测试： 系统被用于验证 Wolfram 在《一种新科学》（NKS）中提出的
布尔代数公理。例如，证明 NAND 算子的复杂代数属性 。   

结果： 这一框架成功实现了证明的生成、可视化（证明图）和自动验证（生
成可执行的 Mathematica 代码），为后来的  FindEquationalProof  奠定了基
础 。   

4.2 枚举公理系统与布尔代数的发现

在更广泛的背景下，Wolfram 进行了一系列实验，系统地枚举特定大小的所有可能
公理系统 。   

参数空间： 搜索空间由公理数量、变量数量和算子数量定义。

布尔代数的极简公理： 这种枚举的一个著名结果是 Wolfram 在 2000 年发现
的布尔代数最简公理： （其中   是
NAND）。这个单一公理足以重构整个逻辑体系。然而，在人类历史上，它完
全不为人知，直到通过暴力枚举才被发现 。   

这个例子有力地证明了“异类数学”的存在——在人类直觉的视线之外，存在着极其
简洁但形式上完全陌生的数学结构。

4.3 蕴涵锥与定理分布

当一个公理系统“运行”时（迭代应用规则），它会生成一个 蕴涵锥（Entailment
Cone）——一个由该公理可推导出的所有真定理构成的不断增长的图。

人类定居点： 人类数学占据了这个锥体中特定的、不连续的区域。“著名定理”
（教科书中命名的那些）通常表现为分散的岛屿，通过人类很少明确表达的冗

((a ⋅ b) ⋅ c) ⋅ (a ⋅ ((a ⋅ c) ⋅ a)) = c ⋅



长机器级引理链连接起来 。   

异类领土： 蕴涵锥的绝大部分由“异类”定理组成——这些陈述在形式上是正确
的，但具有极高的柯尔莫哥洛夫复杂性（Kolmogorov Complexity），并且对人
类观察者缺乏明显的语义意义。

通过对这些锥体的统计分析，我们发现：

可达性： 许多“小”定理（陈述简短的定理）并不一定在锥体的早期步骤中生
成。它们可能需要极其漫长的推导路径才能到达 。   

模型预测偏差： 使用有限模型（如大小为 2 或 3 的模型）来预测定理的有效
性往往会高估真定理的数量，而仅查看蕴涵锥的前几步则会低估它们 。   

4.4 证明空间的拓扑结构

经验分析表明，证明空间具有拓扑结构。

分支图（Branchial Graphs）： 这些图表示系统演化中给定步骤的状态空间。

空洞与奇点： 某些公理系统生成的证明图具有“空洞”——即证明无法连续变形
为彼此的区域。这表明“代数拓扑”的概念可以应用于元数学本身 。   

特征 人类数学 异类数学（荒野中的数学）

选择标

准

历史效用、美学、与物理学的

关系

暴力枚举、随机采样

复杂性 低算法复杂性（简短描述） 往往具有最大算法复杂性

连通性 围绕特定概念的密集聚类 稀疏、可能不连通或超连通

证明结

构

模块化、基于引理、分层 扁平、大规模的重写序列（“分子
级”）

5. 异类数学的概念
“异类数学”指的是由具有与人类根本不同的认知或物理限制的观察者所构建的数学
系统。它不仅仅是“不同的符号”，而是对 Ruliad 的根本不同的采样。



5.1 荒野中的公理系统

“荒野”公理系统是通过枚举发现的、不对应于已知人类领域的系统。Wolfram 对此
进行了分类 ：   

1. 极简系统： 包含一个公理、一个二元算子和一两个变量。

2. 通用/平凡系统： 某些系统（如  ）实际上声明任何两个表达式都是相等

的。在这些系统中，任何定理都可以被证明，使其在逻辑上变得微不足道

（Trivial）。

3. 非增长/恒等系统： 像   这样的公理，如果不与其他算子结合，不会生成
增长的蕴涵锥。

4. 指数增长的累积系统： 例如  。这些系统的蕴涵锥呈指数级增长，迅

速建立大量定理，但大多数早期定理都非常复杂。

5.2 异类观察者的物理学

Wolfram 的元数学物理化理论暗示，如果物理定律是我们作为观察者对 Ruliad 的感
知，那么“异类数学”必然意味着 异类物理学。

不同的参考系： 一个不具有“单一时间线”感知的观察者（例如，能够同时感知
多路图中多个分支的实体）将推导出完全不同的数学“定律”。他们可能不使用
“数字”或“集合”作为基础原语，而是直接在超图的分支结构上进行操作 。   

不可构造的真理： 可能存在这样的异类数学，其中“证明”不是一步步的推导，
而是系统状态的一种整体属性，只有能够一次性摄入整个状态的观察者才能访

问 。   

5.3 机器代码与流体动力学

Wolfram 使用了一个强有力的类比来描述人类数学与异类数学的区别：

分子动力学（异类/底层）： 自动定理证明器生成的详细形式推导就像气体的分
子动力学。它追踪每一个符号的每一次微小碰撞（重写）。这是 Ruliad 的原始
层面。

流体动力学（人类/高层）： 人类数学就像流体动力学。我们不谈论单个分子，
而是谈论压力、流速和粘度（即“整数”、“态射”、“群”等概念）。这是一种宏观
的、粗粒化的描述 。   

a = b

a = a

a = b ∘ b



异类数学可能就在“分子”层面上运作，或者它可能发展出一种完全不同的“流体”描
述，这种描述对于习惯了欧几里得空间和标准逻辑的人类来说是不可理解的。

6. 跨越鸿沟：从分子动力学到概念路标
自动定理证明的一个中心悖论是“可理解性鸿沟（Understandability Gap）”。计算机
可以生成一个 300 步的布尔代数定理证明，但如果这个证明只是符号替换的洪流，
它对人类来说就没有任何 理解 价值。如何将机器生成的“分子”级证明转化为人类可
读的“流体”级叙事，是当前研究的前沿。

6.1 证明的分子本质

自动证明在原始句法层面上运作。例如，Wolfram 布尔代数公理的证明涉及数百次
公理对自身的应用。这是“机器代码”证明。在这一层面上，不存在人类意义上的“引
理”——没有像“交换律”或“分配律”这样的中间概念作为思维的休息点 。   

6.2 概念路标与承重引理

为了弥补这一差距，Jonathan Gorard 和 Wolfram 研究团队开发了启发式算法，以
在自动证明中识别 概念路标（Conceptual Waypoints） 。   

算法机制：

1. 证明网络构建： 将证明表示为一个网络，其中节点是表达式，边是变换规
则。

2. 连接密度分析（Connection Density Analysis）： 算法分析证明图的连通
性，寻找具有高于平均水平的 介数中心性（Betweenness Centrality） 的节
点。

3. 承重引理（Load-Bearing Lemmas）： 这些高密度节点被识别为“承重引
理”。它们是逻辑路径汇聚或发散的关键点。如果一个中间等式被用于证明随
后的 50 个步骤，它就是一个“承重”的结构，代表了一个潜在的数学“概念”
（Concept）。

4. 分层叙事生成： 系统重构线性的机器证明，将其转化为分层叙事。它首先展
示这些承重引理，实际上是创造了一个模仿人类数学阐述的“故事”。“首先我们
证明引理 A，然后利用它来证明引理 B……”

通过这种方式， ProofNotebook  功能可以生成看起来像是由数学家撰写的论文，
配有文本解释，即使底层的逻辑是通过暴力搜索发现的 。   



7. 直觉与形式主义：人类因素的辩证
这种对“路标”的需求与数学家 David Bessis 在其著作《Mathematica: A Secret
World of Intuition and Curiosity》中提出的观点不谋而合。Bessis 深入探讨了直觉
与形式主义之间的紧张关系，他的观点为理解自动证明的局限性提供了心理学维

度。

7.1 “官方数学”与“秘密数学”

Bessis 认为，教科书中的形式化、符号化表示（“官方数学”）仅仅是思维过程的化
石化输出。真正的数学（“秘密数学”）发生在 直觉 中——这是一种非语言的、往往
是视觉的或身体感的心理模拟 。   

系统 1 与系统 2： 利用 Daniel Kahneman 的框架，Bessis 提出，虽然形式主
义属于系统 2（缓慢、逻辑、分析），但真正的数学掌握涉及训练系统 1（快
速、直觉、自动化），使其能够将抽象对象感知为具体的现实。

作为物理活动的数学： Bessis 将做数学比作瑜伽或武术。它需要通过特定
的、看不见的心理动作来重新编程直觉。例如，理解圆不仅仅是定义 

，而是在脑海中操纵一个完美的圆形物体的能力 。   

7.2 冲突与系统 3

自动定理证明器是终极的系统 2 机器。它们没有系统 1。异类数学的挑战在于，它
向我们展示了系统 2 的输出（证明），而我们要么没有对应的系统 1 直觉，要么我
们的直觉与机器的逻辑路径完全不兼容。

Bessis 提出了 系统 3（System 3） 的概念——这是一个辩证过程，人们刻意使用
形式主义（逻辑）来重新训练直觉。在 Wolfram 的工作中，“概念路标”正是这种重
新训练的工具——它们将异类的巨石分解成人类直觉可以开始消化的块 。当人类数
学家看到机器生成的“承重引理”时，他们实际上是在被邀请去构建新的直觉，以适
应机器发现的逻辑地形。   

8. 人工智能与封闭系统：Hinton 的视角
在 Ruliad 和自动推理的交汇点上，人工智能（AI）的角色引发了激烈的讨论。AI
究竟是能够超越人类的数学家，还是仅仅是模仿者？

8.1 “封闭系统”假说

x +2

y =2 r2



人工智能先驱 Geoffrey Hinton 提出，数学是一个“封闭系统（Closed System）”，类
似于围棋或国际象棋 。   

自博弈（Self-Play）与无限数据： 因为数学规则是固定的，且验证是绝对的
（证明要么有效，要么无效），AI 可以像 AlphaGo 一样进行“自博弈”。它不需
要人类数据，可以生成无限的训练数据来探索数学空间。

超越人类： Hinton 预测，由于这种自我生成数据的能力，AI 将在未来十年内
超越人类数学能力。它将能够发现人类从未发现的定理和证明策略，因为它不

受人类疲劳或认知瓶颈的限制。

8.2 Wolfram/Ruliad 的反驳与修正

Wolfram 的视角为 Hinton 的观点提供了细微的差别。虽然数学在形式规则意义上可
能是“封闭”的，但 Ruliad 是无限的。

无限边疆： AI 可以无限地探索 Ruliad，但如果没有“人类”的约束，它很可能
会漂流到“异类”数学中——那些在形式上为真，但对人类观察者来说无关紧
要、无法理解或极其复杂的蕴涵锥区域 。   

翻译层： 因此，AI 在数学中的未来效用不仅仅是证明定理
（ FindEquationalProof  已经可以做到这一点），而是 翻译。AI 必须充当探
险家，不仅带回领土的地图，还要带回“旅行指南”（概念路标），将异类证明转
化为人类直觉可以理解的格式 。   

8.3 模型论 AI

Wolfram 工具的未来版本旨在整合语义“模型论”推理 。这更接近于人类数学家的思
维方式——在构建形式证明之前，先通过测试具体例子（模型）来建立直觉。一个
以这种方式运作的 AI——在“检查例子”（模型论）和“操作符号”（证明论）之间切换
——实际上将是 Bessis 所谓的“系统 3”循环的自动化版本。   

9. 结论：元数学的民主化与工业化
自动定理证明、Ruliad 理论和 AI 的融合标志着从 做 数学到 探索 数学的范式转
变。我们正从手工业时代——数学定理是由人类工匠基于历史直觉手工制作的——
迈向元数学的工业时代。

异类数学是真实的： 它存在于 Ruliad 中。它仅仅是因为我们的生物学历史和
认知限制而未被我们选择查看的数学。



工具作为望远镜：  FindEquationalProof  和类似的工具是这个新时代的望
远镜。它们允许我们看到肉眼不可见的“星辰”（定理）。通过算法识别“承重引
理”，我们将这些遥远的信号解码为人类可读的叙事。

人类角色的转变： 随着机器接管证明的“分子动力学”，人类的角色转向“流体
动力学”——定义高级概念、选择感兴趣的公理系统、并赋予原始计算以意
义。

理解异类数学时代的公理化证明，要求我们接受一个事实：在 Ruliad 中，“真理”是
廉价的，它无处不在。稀缺的是 故事——那是穿越蕴涵锥的人类可读路径，是将那
些真理与我们有限的、有界的现实体验连接起来的桥梁。

附录：关键技术与概念对比表

表 1：逻辑系统对比

系统 量词支

持

内置谓

词

完

备

性

主要算法 典型用

例

全一阶逻辑 (Full
FOL)

任意 (

 等)

半

可

判

定

归结原理

(Resolution) /
Tableaux

通用推

理、三

段论

一阶等式逻辑

(Equational)
仅  仅等式

( )
半

可

判

定

Knuth-Bendix
完成算法

代数理

论 (群,
环, 布尔
代数)

命题逻辑

(Propositional)
无 无 可

判

定

真值表 / SAT
求解器

电路设

计, 基础
逻辑谜

题

表 2：证明的层次结构

∀,∃
P (x)

∀
=



层次 描述 类比

(Wolfram)
认知模式

(Bessis)
处理者

底层

(Machine
Code)

原始的重写规

则应用序列，

极长且无明显

结构。

分子动力

学

无 (或潜意
识)

自动证明器

(Knuth-
Bendix)

中间层

(Waypoints)
通过网络中心

性识别的关键

节点，“承重
引理”。

湍流结构 系统 3 (学
习过程)

启发式算法

/ 辅助证明

高层 (Human
Math)

抽象概念 (如
“交换律”)，宏
观叙事。

流体动力

学

系统 1 (直
觉) + 系统 2
(形式)

人类数学家

报告结束。

本报告基于提供的研究材料综合而成，重点关注 Stephen Wolfram、Jonathan
Gorard 的工作以及 AI 和数学哲学的更广泛背景。


