
几何稳定性与残差动力学：Hyper-Connections、流形约束
与深度Delta学习的统一性场论

1. 绪论：深度学习中的“恒等映射”危机与新范式的诞生
在过去十年中，深度学习的辉煌成就建立在一个看似简单却至关重要的数学假设之

上：**恒等映射（Identity Mapping）**是深层网络信号传播的最佳默认路径。自
2015年He等人提出残差网络（ResNet）以来，  的加性更新公式
成为了构建超深层神经网络的绝对标准。这一设计通过强制层间梯度的雅可比矩阵

（Jacobian）接近单位矩阵，有效地解决了梯度消失问题，使得神经网络的深度得
以从几十层扩展至数千层，并最终支撑起了Transformer架构和万亿参数大模型的崛
起 。   

然而，随着模型规模向万亿参数逼近，这种刚性的“加性归纳偏置”（Additive
Inductive Bias）开始显露出其局限性。标准的残差连接强制保留了前一层的全部信
息，仅允许网络进行增量式的特征修正。这种机制虽然保证了稳定性，却限制了网

络在不同层级间进行激进的状态转换（State Transition）或特征重组的能力。学术
界将这种困境描述为“跷跷板效应”（Seesaw Effect）：模型设计者不得不在“梯度消
失”（Gradient Vanishing，若移除恒等映射）与“表征坍塌”（Representation
Collapse，若过度依赖恒等映射导致深层特征趋同）之间进行艰难的权衡 。   

本研究报告旨在深入剖析三项试图打破这一僵局的前沿架构创新：由ByteDance研
究人员提出的Hyper-Connections (HC)、DeepSeek团队针对大规模训练稳定性提
出的流形约束超连接 (Manifold-Constrained Hyper-Connections, mHC)，以及
普林斯顿大学与UCLA研究团队提出的深度Delta学习 (Deep Delta Learning,
DDL)。这三者虽然出发点不同——HC追求拓扑宽度的扩展，mHC致力于解决扩展
后的稳定性危机，而DDL则从几何代数的角度重构残差算子——但它们在深层机制
上殊途同归。它们共同指向了一个新的范式：将静态的恒等映射替换为可学习的、

数据依赖的、且受到严格数学约束的动态算子。

通过对比分析，我们发现了一个核心的二元对立：无约束的表达能力必然导致混沌

（如HC在27B模型中出现的3000倍信号爆炸），而通过几何或概率约束（如mHC的
Birkhoff多面体投影或DDL的豪斯霍尔德反射）重构信号流，则是通向下一代高性能
基础模型的必由之路 。   
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2. 残差流的拓扑扩张与混沌边缘：Hyper-Connections (HC) 的兴
起与失控

为了理解DeepSeek的mHC和DDL的创新之处，必须首先解构它们试图修正的对象
——Hyper-Connections (HC)。HC不仅仅是一个架构微调，它代表了对残差流
（Residual Stream）拓扑结构的一次激进重构。

2.1 从单车道到多车道：HC的拓扑重构

传统的Transformer或ResNet可以被视为一条单车道的高速公路，信息流 
 沿着这条主干道顺序流经各个处理单元。随着模型宽度的增加，线性投影层的参数
量以   的速度增长，这成为了扩展模型规模的主要计算瓶颈。

Hyper-Connections (HC) 提出了一种“宽度解耦”的思路。它将单一的宽残差流拆解
为   个并行的子流（Sub-streams），也就是将隐状态从向量   扩展为矩阵 

。在这种范式下，层间的信号传播不再是简单的加法，而是一个复杂的

线性混合过程 ：   

其中，  是一个可学习的残差混合矩阵。这一矩阵的存在意味着，  个
并行的信息流可以在每一层之间进行交互、融合或重新路由。理论上，这赋予了网

络极大的灵活性：某些流可以专门负责长程记忆，而其他流则专注于局部特征，

 则充当了动态路由器的角色，根据输入内容实时调整各流的权重 。   

2.2 动态性的代价：无界增益与信号爆炸

HC在小规模模型（如1B参数）上表现出了显著的优势，收敛速度提升了1.8倍，且
在逻辑推理任务上优于传统残差网络 。然而，当这一架构被DeepSeek团队扩展至
27B参数规模进行大规模预训练时，其内在的数学缺陷暴露无遗。   

问题的根源在于矩阵   的无约束性。在标准的残差连接中，恒等映射   的谱半
径（Spectral Radius）严格为1，这保证了信号在传播数百层后其模长（Norm）保
持相对稳定。但在HC中，  是由神经网络根据输入动态生成的，没有任何机制
强制其特征值保持在单位圆内。

DeepSeek的实验数据揭示了一个惊人的现象：在27B模型的训练过程中，由于层
与层之间微小的增益累积（Multiplicative Amplification），残差流中的信号强度在经
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过60层传播后，其幅度（Magnitude）可能会增长至输入信号的3000倍 。   

这种**信号爆炸（Signal Explosion）**引发了一系列灾难性的后果：

1. 梯度数值溢出：前向传播的信号爆炸导致反向传播的梯度同样以指数级膨胀，
最终触发浮点数溢出（NaN），导致训练在约12,000步时突然崩溃 。   

2. 优化景观的崎岖化：巨大的信号方差破坏了LayerNorm和Attention机制的假设
前提，使得优化器无法找到稳定的下降方向。

3. 恒等映射属性的丧失：HC的设计初衷是增强表达能力，但它无意中破坏了残
差网络赖以生存的“保护机制”——即信号在未经处理时应能无损通过网络的特
性 。   

这一失败案例深刻地揭示了深度学习中的一个基本守恒定律：在深层系统中，表达

能力的自由度不能以牺牲信号的守恒性为代价。

3. 概率几何的救赎：DeepSeek mHC 与 Sinkhorn-Knopp 算法
面对HC的稳定性危机，DeepSeek团队并未选择退回到传统的残差连接，而是提出
了一种数学上更为精妙的解决方案：流形约束超连接（Manifold-Constrained
Hyper-Connections, mHC）。mHC的核心思想是承认多流交互的价值，但必须给
这种交互套上严格的数学枷锁 。   

3.1 伯克霍夫多面体（Birkhoff Polytope）与双随机约束

为了消除信号爆炸，mHC 强制要求每一层的残差混合矩阵   必须落在伯克霍夫
多面体上。这意味着   必须是一个双随机矩阵（Doubly Stochastic Matrix）。

双随机矩阵   需满足以下三个严格条件：

1. 非负性： ，所有元素非负。

2. 行和为1： ，每一行的元素之和为1。

3. 列和为1： ，每一列的元素之和为1。

引入这一约束的物理和数学意义极其深远：

能量守恒与非扩张性：根据线性代数理论，任何双随机矩阵的谱范数（最大奇

异值）都受到严格限制，其最大特征值为1。这意味着 
（在特定条件下）。虽然信号可以在不同的流之间转移，但总的“能量”或“质量”
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在传播过程中不会凭空增加。这直接从数学原理上根除了3000倍信号放大的可
能性，将增益严格限制在 1.6倍 以内（这一微小的增益来自非线性部分，而非
残差路径的累积） 。   

凸组合性质：双随机矩阵实际上是在对输入的   个特征流进行加权平均
（Convex Combination）。它确保了输出特征是输入特征的某种“混合物”，保
留了全局的均值信息（Mean Conservation） 。   

乘法封闭性：双随机矩阵集合在矩阵乘法下是封闭的。这意味着，无论网络有

多深，第1层到第   层的复合变换矩阵   依然是一个双随机矩阵。这
一性质保证了网络深度的可扩展性，使得超深层网络的训练成为可能 。   

3.2 Sinkhorn-Knopp 算法的深度学习应用

在神经网络的端到端训练中，如何强制一个由参数动态生成的矩阵满足双随机性

质，且保持可微性？DeepSeek 创新性地引入了 Sinkhorn-Knopp 算法 作为网络
层的一部分。

传统的正则化方法（如Softmax）只能保证行和为1（行随机），无法保证列和为1。
Sinkhorn-Knopp 算法通过迭代的方式交替归一化矩阵的行和列，最终收敛至双随
机矩阵。mHC 中的具体实现步骤如下 ：   

1. 正性保证：首先对未约束的原始权重矩阵   进行指数化操作 
，确保所有元素为正实数。

2. 迭代归一化：进行   次迭代（DeepSeek 实验表明   足以收敛）：

行归一化：除以当前行之和。

列归一化：除以当前列之和。

3. 前向与反向传播：这一过程完全可微。虽然涉及到循环迭代，但通过自动微分
（Autograd）或定制的梯度算子，误差梯度可以穿过Sinkhorn过程，更新底层
的权重  。

这一设计将一个经典的矩阵缩放算法（Matrix Scaling Problem）转化为了深度神经
网络中的一个可学习的非线性层。它不仅解决了稳定性问题，还为网络引入了一种

新的归纳偏置：特征流之间的公平交换与守恒混合。

3.3 系统级工程优化：TileLang 与 Kernel Fusion
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虽然理论上完美，但在实际的GPU训练中，Sinkhorn算法的引入带来了巨大的挑
战。标准的PyTorch实现会启动数十个小的CUDA内核（Kernel），导致严重的显存
带宽瓶颈（Memory Wall）。

DeepSeek 在 mHC 的实现中展示了极其强悍的系统工程能力。他们并没有止步于
算法设计，而是深入到底层硬件优化：

TileLang 内核融合：利用自研的 TileLang 语言，将整个 Sinkhorn-Knopp 的
20次迭代融合为一个单一的 CUDA Kernel。这避免了中间结果在 HBM（高带
宽内存）和计算单元之间的反复读写，极大地降低了内存开销 。   

重计算（Recomputation）策略：为了节省显存，mHC 不在反向传播中存储
前向传播时的中间矩阵，而是利用定制的反向内核（Custom Backward
Kernel）在片上（On-chip）实时重新计算 Sinkhorn 迭代。这是一种典型的“以
计算换内存”的策略，使得 mHC 的引入仅增加了 6.7% 的训练时间开销，却换
来了巨大的性能与稳定性提升 。   

4. 几何代数的重构：深度Delta学习 (DDL) 的谱系控制
如果说 mHC 是通过拓扑约束（双随机矩阵）来驯服多流网络，那么深度Delta学习
(DDL) 则是通过几何构造（豪斯霍尔德反射）来重塑单流网络的更新规则。根据用
户上传的论文《Deep Delta Learning》，DDL 提供了一种更为底层且数学形式优美
的视角来理解残差更新 。   

4.1 Delta 算子与广义豪斯霍尔德反射

DDL 的核心思想是否定 ResNet 的加性更新  ，代之以一种几何变换算子 
。DDL 定义的层间更新律为：

其中，Delta 算子   被构造为单位矩阵的秩-1 扰动：

这里，  是一个单位方向向量（ ），  是一个标量门控系数。

这一形式在数学上被称为广义豪斯霍尔德变换（Generalized Householder
Transformation）。标准的豪斯霍尔德反射矩阵（Householder Reflection）对应
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于   的情况，用于将向量关于超平面进行镜像反射。DDL 将这一离散的几何操
作连续化，通过学习 $\beta \in $，网络可以动态地在三种基本几何行为之间插值 
：   

1. 恒等映射（Identity,  ）：当   时， 。此时网络退化为标准的

残差连接，保证了深层信号的无损传递。

2. 正交投影/遗忘（Projection/Forgetting,  ）：当   时，
。这是一个正交投影算子，它会将输入向量   投影到与   正交的子空间

中，从而完全擦除沿   方向的旧信息。这是标准 ResNet 无法做到的
（ResNet 只能通过相加来抵消，难以精确擦除）。

3. 几何反射（Reflection,  ）：当   时，  变为正交反射矩阵。这不
仅保持了向量的模长，还翻转了特定方向的符号，使得网络能够模拟对抗性或

振荡性的动力学行为。

4.2 谱系定理与稳定性子空间

DDL 论文提出了算子特征值谱系定理（Operator Eigenvalue Spectral
Theorem），为这种变换的稳定性提供了严格证明。定理指出，算子   的特征值谱
系为：

稳定性子空间（Stability Subspace）：在   维特征空间中，有   个特征
值严格为 1。这意味着，在绝大多数方向上，Delta 算子都表现为恒等映射。
这继承了 ResNet 的稳定性优势，确保了梯度可以无损地流过绝大部分维度。

动态伸缩特征值（Dynamic Scaling Eigenvalue）：唯一变化的特征值是 
。这一特征值控制了网络在方向   上的行为。

DDL 的这一设计巧妙地解决了“稳定性-可塑性”悖论。它不像 mHC 那样通过约束整
个矩阵的范数来保持稳定，而是通过构造一个巨大的“特征值=1”的不变子空间来保
证整体稳定，同时允许在一个特定的秩-1 方向上进行剧烈的、甚至是非单调（如反
射，特征值为负）的变换。

4.3 “替换”而非“累加”：Delta 规则的回归

将 DDL 的更新公式重写，可以得到：
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这一形式揭示了其本质：同步门控的写入与擦除。

：代表“擦除”或“遗忘”旧状态中沿   方向的分量。

：代表“写入”新的目标值。

这种   的形式与经典神经网络中的 Delta 规则（Delta Rule） 或误差修正学
习（Error-Correction Learning）完全同构。DDL 实际上是在每一层都执行一次显
式的“记忆重写”操作。这与现代线性 Attention（如 DeltaNet, Mamba）中的状态更
新机制不谋而合，证明了在深度方向上引入显式的遗忘机制是提升模型推理能力的

关键 。   

5. 深度机制对比：三者之间的共通点与差异
通过对 Hyper-Connections (HC)、Manifold-Constrained Hyper-Connections
(mHC) 和 Deep Delta Learning (DDL) 的深入剖析，我们可以构建一个多维度的对
比框架，揭示它们背后的深层机制。

5.1 核心共通点：打破静态恒等映射

这三篇论文最根本的共识在于：标准的加性残差连接   已经成为限制模型
能力的天花板。

HC 认为限制在于宽度（Width）：单通道的残差流限制了信息的并行处理能
力，因此需要拓扑上的扩张（  lanes）。

mHC 认同 HC 的观点，但补充了**守恒（Conservation）**的必要性：扩张必
须受到物理定律般的数学约束（双随机性），否则会导致系统崩溃。

DDL 认为限制在于操作（Operation）：单纯的加法无法通过线性组合有效地
实现“遗忘”或“反射”，因此需要几何上的泛化（ -controlled Householder）。

三者都试图引入一个数据依赖的（Data-Dependent）、可学习的变换算子来调节残
差流，从而赋予网络动态分配计算资源和信息流向的能力。

5.2 机制差异：拓扑扩张 vs. 几何泛化
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特征 Hyper-Connections
(HC)

DeepSeek mHC Deep Delta Learning
(DDL)

核心

操作

拓扑扩张

(Topological
Expansion)

流形约束

(Manifold
Constraint)

几何泛化 (Geometric
Generalization)

残差

流形

态

矩阵   (多
流)

矩阵 
 (多流)

向量/矩阵 (单流/多值)

变换

算子

无约束线性矩阵  双随机矩阵  广义豪斯霍尔德算子 

数学

约束

无 (None) 概率守恒 (行/列和
为1)

几何等距/投影 (秩-1 扰
动)

实现

机制

直接线性投影 Sinkhorn-Knopp
迭代算法

秩-1 外积与 Sigmoid
门控

稳定

性来

源

不稳定 (3000x 爆炸) 谱范数   (非扩
张)

 个特征值为 1 (子
空间稳定)

动力

学特

性

无界放大/缩小 凸组合 (混合/平
均)

恒等 / 投影(遗忘) / 反
射(负特征值)

系统

开销

高 (内存带宽压力) 中 (需 Kernel
Fusion 优化)

低 (仅增加秩-1 计算)

5.3 稳定性机制的深层原理：概率 vs. 几何

mHC 的稳定性来自“概率守恒”：通过 Sinkhorn-Knopp，mHC 将残差流的混
合过程建模为一种概率转移或质量重分配过程。由于总质量（行/列和）守
恒，信号不可能无限增长。这种机制非常适合**路由（Routing）**任务——即
决定将哪部分信息发送到哪个流进行处理。
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DDL 的稳定性来自“几何不变性”：通过豪斯霍尔德结构，DDL 显式构造了一
个巨大的不变子空间。无论   如何变化，算子在绝大多数方向上都是单位矩
阵。这种机制非常适合**状态更新（State Update）**任务——即在保持背景
上下文稳定的同时，精确修改某一特定方向上的特征。

值得注意的是，mHC 的双随机约束虽然防止了爆炸，但也限制了某些表达能力
（例如，它很难实现整体信号的符号翻转或大幅度的各向异性缩放），而 DDL 通过
引入负特征值（反射）和零特征值（投影），在单个方向上提供了更丰富的动力学

行为。

6. 第二层级洞察：从“炼金术”到“结构工程”
对这三项工作的综合分析揭示了深度学习研究范式的深刻转变。

6.1 “安全流形假设” (The Safe Manifold Hypothesis)

HC 的失败和 mHC 的成功共同验证了一个假设：为了使神经网络能够扩展到无限
深度，其层间转移算子必须驻留在一个紧致的、保范的“安全流形”上。

无约束矩阵空间   不是安全流形，因为它包含导致指数爆炸的算子。

伯克霍夫多面体（Birkhoff Polytope）是一个安全流形，因为它保证了凸组合
性质。

正交群及其广义形式（如 DDL 的算子空间）是安全流形，因为它们是等距或
非扩张的。

未来的架构设计将不再是随意添加可学习参数，而是寻找更丰富、更具表达力的“安
全流形”，并设计高效的算法（如 Sinkhorn 或 Cayley 变换）将参数投影到这些流
形上。

6.2 隐式 MoE 与残差流的路由化

DeepSeek 的 mHC 实际上是将残差连接本身转化为了一个微型的混合专家模型
（MoE）。通过动态生成  ，网络在每一层都在   个潜在的“专家通道”之间进行
路由选择。这模糊了“层（Layer）”与“路由器（Router）”的界限。结合 DDL 的视角，
这种路由不仅可以是通道间的混合，还可以是几何空间中的方向选择。这预示着未

来模型可能会出现分形 MoE 结构：不仅 MLP 层是 MoE，残差连接本身也是一个
动态路由网络。

β

GL(n, R)

H ​l
res n



6.3 硬件感知的数学设计

mHC 的成功不仅在于数学上的 Sinkhorn 约束，更在于其对 TileLang 和 Kernel
Fusion 的极度依赖。这表明，到了 27B+ 参数的规模，算法创新已不能脱离硬件
特性独立存在。任何新的数学算子（如 Sinkhorn 迭代），如果不能被融合为一个高
效的 GPU Kernel 以克服内存墙（Memory Wall），在实际的大模型训练中都是不可
用的。DDL 的秩-1 更新之所以具有潜力，也是因为它涉及的矩阵-向量乘法
（MVM）极其适合 GPU 的 Tensor Core 架构。

7. 结论与展望
DeepSeek 的 mHC 论文与 Deep Delta Learning 论文，分别从拓扑约束和几何构
造两个维度，宣告了“后 ResNet 时代”的到来。

Manifold-Constrained Hyper-Connections (mHC) 通过引入 Sinkhorn-Knopp 算
法，成功驯服了多流残差网络的混沌，解决了长期困扰超深层网络的信号爆炸问题

（从 3000x 降至 1.6x），为万亿参数模型的拓扑扩展铺平了道路。它证明了在深度
学习中，数学约束（如双随机性）不仅仅是理论上的点缀，更是工程上可扩展性的

基石。

Deep Delta Learning (DDL) 则通过广义豪斯霍尔德变换，赋予了残差连接“遗忘”
和“反思”的能力，从几何底层丰富了神经动力学的可能性。

这两者的结合——在一个受控的、多流的拓扑结构中，应用具有几何解释力的动态
算子——极有可能构成下一代基础模型（Foundation Models）的标准骨架。我们
正在见证神经网络从简单的“堆叠层”向精密的“流形工程”进化的历史性时刻。


