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Abstract

The efficacy of deep residual networks is fundamentally predicated on the identity shortcut
connection. While this mechanism effectively mitigates the vanishing gradient problem, it
imposes a strictly additive inductive bias on feature transformations, thereby limiting the
network’s capacity to model complex state transitions. In this paper, we introduce Deep Delta
Learning (DDL), a novel architecture that generalizes the standard residual connection by
modulating the identity shortcut with a learnable, data-dependent geometric transformation.
This transformation, termed the Delta Operator, constitutes a rank-1 perturbation of the
identity matrix, parameterized by a reflection direction vector k(X) and a gating scalar §(X).
We provide a spectral analysis of this operator, demonstrating that the gate 5(X) enables
dynamic interpolation between identity mapping, orthogonal projection, and geometric reflection.
Furthermore, we restructure the residual update as a synchronous rank-1 injection, where the
gate acts as a dynamic step size governing both the erasure of old information and the writing of
new features. This unification empowers the network to explicitly control the spectrum of its
layer-wise transition operator, enabling the modeling of complex, non-monotonic dynamics while
preserving the stable training characteristics of gated residual architectures.

Project Page: https://github.com/yifanzhang-pro/deep-delta-learning

1 Introduction

Deep residual networks (He et al., 2016) represent a paradigm shift in neural network design,
enabling the stable training of models with unprecedented depth. Their core mechanism, the identity
shortcut connection, reformulates layers to learn a residual function F(X) with respect to their
input X. In its canonical form, the residual update is an element-wise addition:

X1 =X+ F(Xl) (11)

You can view this as a forward Euler step (step size 1) for the ODE X = F(X). This viewpoint
ties deep networks to dynamical systems (Chen et al., 2018). The strictly additive update also puts
a strong translation bias on the learned dynamics. The shortcut path keeps a fixed Jacobian equal
to the identity operator.

This rigidity limits what state transitions the network can represent. Recent work points to the
need for more flexible transitions, including ones that realize negative eigenvalues, when modeling
patterns like oscillations or oppositional behavior (Grazzi et al., 2024).


https://github.com/yifanzhang-pro/deep-delta-learning
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Figure 1 The Deep Delta Residual Block. The architecture generalizes the standard residual connection. A
learnable scalar gate 8 controls a rank-1 geometric transformation.

To overcome this limitation, we propose a principled generalization of the residual connection
rooted in geometric linear algebra. We introduce Deep Delta Learning (DDL), featuring a novel
residual block that applies a learnable, rank-1 transformation to the hidden state matrix X € R%*d
This formulation aligns the network depth with memory-augmented architectures, effectively treating
the hidden state as a dynamic value matrix. This block utilizes a single learned scalar gate 5(X) to
smoothly interpolate between a standard residual connection, an orthogonal projection operator,
and a full geometric reflection. Our contributions are:

1. We propose the Delta Residual Block, a multi-branch architecture that learns to apply a
generalized Householder operator to the matrix-valued shortcut connection, parameterized by
a learned direction k(X) and a learned gate 5(X), which is illustrated in Figure 1.



2. We give a spectral analysis of the Delta Operator. We derive its complete eigensystem, and
show how ((X) controls the transformation by shaping its spectrum.

3. We unify identity mapping, projection, and reflection in one continuously differentiable module.
We also show DDL recovers the Delta Rule update, with the gate 5 acting like a depth-wise
step size.

2 The Delta Residual Block

We build our method upon the mathematical foundation of the Householder reflection, which we
generalize into a learnable, state-dependent operator.

2.1 Preliminaries: The Householder Transformation

Definition 2.1 (Householder Matrix). For a non-zero vector k € R?, the Householder matrix Hy

is defined as:
kk '

I3

Geometrically, Hy reflects any vector across the hyperplane with normal vector k.

H=1-2 (2.1)

The Householder matrix is a cornerstone of numerical linear algebra and possesses several key
properties: it is symmetric (Hy = H} ), orthogonal (H, Hy = I), and involutory (HZ = I). Its
spectrum consists of a single eigenvalue of —1 (eigenvector k) and d — 1 eigenvalues of 1 (the
eigenspace k™).

2.2 Formulation of the Delta Operator

We generalize the Householder matrix by replacing the constant factor of 2 with a learnable, data-
dependent scalar gate, 5(X). This leads to the Delta Residual (Delta-Res) block. Let the hidden
state be a matrix X € R%?%  where d is the feature dimension and d, denotes the number of value
channels. We modify the additive residual to be a rank-1 update aligned with the reflection vector
k. The block output is computed as:

X1 = A(X)X; + B(X)k(X)v(X;) " (2.2)

where v € R% is the residual value vector generated by the branch F : R¥*% — R Here, the
outer product kv' constitutes the additive update. Crucially, we apply the gate 5(X) to this
constructive term as well, linking the erasure and write operations. The term A(X) is the Delta
Operator acting spatially on the feature dimension d:

k(X)k(X)"
k(X)Tk(X) + ¢

A(X)=1I-p5(X) (2.3)
The architecture learns the reflection direction k(X) € R?, the value vector v(X) € R% and the
reflection intensity 3(X) € R through separate, lightweight neural network branches. The constant
€ > 0 ensures numerical stability. For the theoretical analysis, we assume k is strictly normalized



such that k'k = 1 (see Appendix A for implementation details). Under this condition (e — 0), the
operator simplifies to:
A(X) = I BX)k(X)k(X)T (2.4)
Since X is a matrix, the operator A(X) broadcasts across the value dimension d,, applying the
geometric transformation simultaneously to every column of the hidden state.
Under the same unit-norm assumption, substituting A(X) =1 — 8(X)k(X)k(X)" into Eq. (2.2)
yields an equivalent additive, rank-1 Delta form:

X141 =X + B(X) k(X)) (VX)) — k(X)) X)), (2.5)

which makes explicit that the same scalar 3 modulates both the erasure term k' X and the write

term v .

The gating function 3(X) is parameterized to lie in the range [0, 2] via a projection of the state
features followed by a sigmoid function:

B(X) = 2 o(Linear(G(X))) (2.6)
where G(-) is a pooling, convolution, or flattening operation. This specific range is chosen for its
rich geometric interpretations, which we analyze next.

3 Analysis

The expressive power of the Delta-Res block comes from the spectral properties of the operator
A (X)), which are controlled by the learned gate §(X).

3.1 Spectral Decomposition of the Delta Operator

Theorem 3.1 (Spectrum of the Delta Operator). Let A =1 — fkk' where k € R? is a unit vector
(kTk =1) and 3 € R is a scalar. The spectrum of A, denoted o(A), is:
o(A)={1,1,...,1,1 -3} (3.1)
————
d—1 times
The eigenvector corresponding to the eigenvalue A = 1 — 3 is k. The eigenspace for the eigenvalue
A = 1 is the orthogonal complement of k, denoted k* = {u € R? | k"u = 0}.
Proof. Let u be any vector in the hyperplane orthogonal to k (i.e., u € k* such that k'u = 0).
Applying A to u yields:
Au=(I-pkk")Ju=Tu—pk(kk'u)=u—-pk(0)=u=1-u (3.2)
Thus, any vector in the (d — 1)-dimensional subspace k= is an eigenvector with eigenvalue A = 1.
Now, consider applying A to the vector k itself:

Ak = (I - Bkk ")k =Tk — fk(k 'k) = k — fk(1) = (1 — A)k (3.3)
Thus, k is an eigenvector with eigenvalue A = 1 — 3. Since we have found d linearly independent
eigenvectors spanning R?, we have characterized the full spectrum of A. O

This theorem provides a clear and powerful interpretation of the gate 3(X). By learning a single
scalar, the network can dynamically control the geometry of the residual transformation across all
d, columns of the state matrix simultaneously.



Lifting to matrix-valued states. The spectral statements above are spatial: they describe the
linear map u — Au on R% Since our hidden state is a matrix X € R¥% and the shortcut acts by
left-multiplication, each of the d,, columns is transformed independently by the same A. Equivalently,
under vectorization, the induced linear operator is I, ® A. Thus the spectrum of the lifted map
consists of the eigenvalues of A repeated d, times, and its determinant equals det(A)d“.

Orthogonality condition. Because A is symmetric, its singular values coincide with the absolute
values of its eigenvalues. In particular, A is orthogonal if and only if |1 — 8| =1, i.e., 8 € {0,2}
under the unit-norm assumption. For § € (0,2), A performs an anisotropic contraction along k
(and flips sign along k when 5 > 1).

Corollary 3.2 (Spatial Determinant). The determinant of the Delta Operator A(X), acting on
the spatial features R?, is given by:

d
det(A(X)) = [T A = 177" (1 - B(X)) = 1 - B(X) (3.4)
=1

Since the shortcut broadcasts across the d, value columns, the induced determinant on the full
matrix state space R¥% (equivalently, on vec(X) € R%v) is det(A(X))% = (1 — B(X))%. Thus
B(X) controls the signed volume change along the spatial direction k(X); in particular, 5(X) > 1
introduces a negative spatial eigenvalue (a reflection along k), while the global orientation of the
lifted state space flips if and only if d, is odd.

3.2 Unification of Geometric Operations

Theorem 3.1 reveals that the range [0, 2] for 5(X) allows the operator to interpolate between three
fundamental linear transformations.

o ldentity Mapping (5(X) — 0): As S — 0, the eigenvalue 1 — 8 — 1. All eigenvalues of A (X)
become 1, so A(X) — I. Since f also modulates the injection term Bkv', the entire update
vanishes, meaning X;; ~ X;. This identity behavior is crucial for preserving signal propagation
in very deep networks.

o Orthogonal Projection (5(X) — 1): As 5 — 1, the eigenvalue 1 — § — 0. The operator A (X)
becomes I — kk ', an orthogonal projector (rank d — 1) onto the hyperplane k. The component
of each column of the input state X parallel to k is explicitly removed (“forgotten”) before
the residual is added. The operator becomes singular, and det(A) — 0. In terms of the full
block (Eq. (2.5)), this regime can be interpreted as replace-along-k: the shortcut removes the
k-component, and the rank-1 write injects a new component along k specified by v .

o Full Reflection (5(X) — 2): As 8 — 2, the eigenvalue 1 — 5 — —1. The operator A(X) becomes
I —2kk', a standard Householder matrix. This performs a perfect reflection of each column
of X across k. This is the only case in this range where the transformation is guaranteed
to be orthogonal and spatially volume-preserving, with det(A) — —1. The negative spatial
determinant signifies a change in orientation (a reflection) of the basis. Together with the identity
case (8 = 0), this is the only setting in [0, 2] for which the shortcut operator A is orthogonal.
The full block additionally applies the synchronized rank-1 write term, yielding a reflection of
the incoming state followed by a write aligned with k.



3.3 Special Case: Gated Residual Learning

A critical property of Deep Delta Learning is its behavior in the limit of the gating scalar. When
the gate vanishes (5(X) — 0), the Delta Operator converges to the identity matrix (A(X) — I),
and the constructive term vanishes. Consequently, the update rule in Equation (2.2) simplifies to:

X1 =X, (3.5)

This recovers the identity mapping, effectively allowing the layer to be skipped entirely. This
behavior is consistent with the zero-initialization strategy often required for training very deep
networks. Conversely, when § ~ 1, the layer functions as a Gated Rank-1 Matrix ResNet, where 3
acts as a learned step size governing the magnitude of the update. This demonstrates that DDL
generalizes residual learning by introducing a multiplicative, geometric modulation that is coupled
synchronously with the value injection.

3.4 Diagonal Feature Matrices Case

To better understand the mixing properties of the Delta Operator, consider the special case where
the input state X € R4 is a square diagonal matrix, X = diag(\1, ..., Ag). This represents a state
where features are perfectly decoupled across the value dimensions. The application of A yields:

(AX);; = (X — Bkk " X)ij = \ibij — BAjkik; (3.6)

Specifically, the off-diagonal element (i # j) becomes —f\;k;k;, while the diagonal element (i = j)
is scaled to \;(1 — Bk?). This implies that the output feature i is now dependent on the magnitude
of the input feature j, scaled by the geometric coherence k;k;. This result elucidates a critical
function of the Delta block: it induces controlled feature coupling. Even if the incoming features
are independent, a non-zero  forces an interaction between the i-th and j-th modes proportional
to the projection of the reflection vector k.

If 3 — 1 (projection), the shortcut removes the component of each column along k, mapping
the state into k- before the write term reinstates a new k-component specified by v'. If 3 — 0,
the diagonal structure is preserved.

3.5 Vector Hidden State Dynamics

While DDL operates on matrix-valued states X € R%*% it naturally encapsulates standard
vector-based deep learning as a specific limit. We identify two distinct regimes:

The Scalar Value Limit (d, =1). When the value dimension is reduced to unity, the hidden state
degenerates to a standard feature vector x € R%. In this limit, the value update v becomes a scalar
v € R. The Delta update rule Eq. (2.2) simplifies to:

X141 =%+ B (v — k/ x;) Ky (3.7)
——
ot}

Here, the geometric transformation collapses into a dynamic scalar gating mechanism. The term ~;
acts as a data-dependent coefficient that couples the update magnitude to the discrepancy between
the proposed write value v; and the current projection lexl.



The Independent Feature Limit. Alternatively, one may view the diagonal case in Section 3.4 as a
representation of a vector state embedded in a matrix diagonal. As shown in the diagonal analysis,
the Delta Operator introduces feature coupling via the term Sk;k;. To recover the behavior of
standard element-wise vector updates (where features do not mix spatially), the reflection vector k
must be aligned with the canonical basis (i.e., one-hot). In this regime, the Delta Operator acts as
an element-wise gating function, strictly preserving the independence of the feature dimensions.

4 Connections to Optimization and Delta Architectures

The terminology Deep Delta Learning reflects a structural homology with the Delta Rule, a funda-
mental update mechanism recently popularized in efficient sequence modeling, e.g., DeltaNet (Schlag
et al., 2021; Yang et al., 2024).

4.1 The Delta Rule for Residual Learning

The standard residual connection, X; 11 = X; + F(X;), imposes a strictly additive inductive bias.
Information, once generated by F, is simply accumulated. This can lead to “residual accumulation”,
where noisy or interfering features persist across layers because the network lacks an explicit
mechanism to selectively filter the hidden state.

Deep Delta Learning addresses this by incorporating the Delta Rule structure into the depth
dimension. Expanding the Delta Residual update in Equation (2.2) using the rank-1 residual
definition:

X =Xo+ 8k | v/ -k X (4.1)
~ e
Write Erase

This formulation exactly recovers the Delta Rule update utilized in fast associative memories and
linear attention. The term leXl represents the current projection of the state onto the reflection
vector (the “error” or “old memory”). The term (v; — k;' X;) acts as the correction signal.

Since X; € R¥¥% ig a matrix, the term leXl yields a row vector in R'*%  representing the
projection of every value column onto k;. The update rigidly aligns both the erasure (destructive)
and injection (constructive) operations along the geometric direction defined by the projector k;,
modulated by the step size 5;.

When B(X;) ~ 1, this subtractive term acts as an orthogonal projection, effectively erasing the
component of the incoming state X; parallel to k(X;) (forgetting). When 5(X;) ~ 2, the term
subtracts twice the projection, resulting in a sign inversion (reflection). This provides the network
with a flexible mechanism to selectively clean or reorient specific feature subspaces layer-by-layer,
preventing the accumulation of interference.

4.2 Relation to DeltaNets and Householder Products

Our work shares a theoretical link with the DeltaNet architecture (Schlag et al., 2021), which
replaces the additive accumulation of Linear Transformers with a Delta Rule for memory updates.

We demonstrate that Deep Delta Learning is the depth-wise isomorphism of the DeltaNet
recurrence. In DeltaNet, the hidden state (memory) S; evolves over time ¢. To unify notation with



our depth-wise formulation, we present the DeltaNet update using left-multiplication semantics,
where the memory state is S; € R%*dv:

St = (I - Bikik/ )Si—1 + Bikev, (4.2)

Here, the operator acts on the key dimension dj, which is analogous to the feature dimension d in
DDL. Comparing this to our Deep Delta Layer update Equation (2.2) acting over depth :

X1 = (I- Bkk)X; + Bikv, (4.3)

where v; is the vector output of the value branch.
This reveals a direct structural correspondence:

o The memory state S; (dimension dj x d,) in DeltaNet corresponds to the feature activation X;
(dimension d x d,) in DDL.

¢ Both architectures employ the rank-1 Householder operator to selectively reflect or erase subspace

components. DeltaNet applies this over time steps ¢, whereas DDL applies it over network depth
l.

e Our modified residual update BlklvlT aligns perfectly with the DeltaNet write operation. By
incorporating f; into the constructive term, we interpret §; as a layer-wise step size for the
depth-wise ODE. This ensures that both the erasure and injection components are modulated
synchronously, ensuring the update represents a coherent geometric transformation of the state
X.

Thus, DDL can be interpreted as applying the Delta Rule to layer-wise feature evolution, enabling
the network to forget or rewrite features from shallow layers as they propagate deeper.

5 Related Work

Our work builds upon several key research themes in deep learning.

Gated and Invertible Architectures. Highway Networks (Srivastava et al., 2015) introduced data-
dependent gating to residual networks, but their gates interpolate between the identity path and
the function path, rather than modifying the transformation itself. Invertible Residual Networks
(i-ResNets) (Behrmann et al., 2019) constrain the Lipschitz constant of F to ensure invertibility,
which is useful for applications like normalizing flows. Our Delta shortcut operator is invertible
whenever 1 — 3 # 0 (in the € — 0 analysis), and becomes an orthogonal involution at f = 2 (a
Householder reflection). DDL does not enforce invertibility globally; instead, it allows the network to
learn when a near-invertible transition is beneficial versus when an intentionally singular (projective)
transition is useful for controlled forgetting.

Orthogonal and Unitary Networks. A significant body of work has focused on constraining
network weights to be orthogonal or unitary to improve gradient stability and preserve geometric
structure (Arjovsky et al., 2016; Jing et al., 2017). Householder reflections are a classic method for
parameterizing orthogonal matrices. These methods enforce orthogonality as a strict constraint. In
contrast, our Delta Residual Network learns to deviate from identity and orthogonality via the gate
B(x), providing a soft, adaptive constraint that can be relaxed to pure projection or reflection.



Neural Ordinary Differential Equations. Neural ODEs (Chen et al., 2018) model the continuous
evolution of features. The standard ResNet Eq. (1.1) is a discretization of the simple ODE X = F(X).
Our proposed architecture alters the underlying dynamics to X = 8(X)k(X)(v(X) " — k(X)"X),
introducing a state-dependent projection term applied to the matrix state. This allows for a much
richer family of learnable dynamical systems that can exhibit contractive or oscillatory behavior
across multiple value dimensions.

6 Conclusion

We have introduced Deep Delta Learning, a novel architecture built upon an adaptive, geometric
residual connection. Through analysis, we have demonstrated that its core component, the Delta
Operator, unifies identity mapping, projection, and reflection into a single, continuously differentiable
module. This unification is controlled by a simple learned scalar gate, which dynamically shapes
the spectrum of the layer-to-layer transition operator. By empowering the network to learn
transformations with negative eigenvalues in a data-dependent fashion, DDL offers a significant
and principled increase in expressive power while retaining the foundational benefits of the residual
learning paradigm.
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Appendix

A Implementation and Parameterization Details

The Deep Delta Learning (DDL) framework relies on the efficient estimation of the reflection direction
k(X), the scalar gate 3(X), and the residual value v(X). While the theoretical results hold regardless
of the specific topology used to approximate these functions, we outline two primary architectural
instantiations for the generator functions: MLP-based and Attention-based parameterizations.

Let the hidden state be X € R%*%  We denote the generator branch for the reflection vector as
a function ¢y, : R¥*% — R,

A.1 Parameterization of the Reflection Direction k(X)
The geometric orientation of the Delta Operator is determined by k. We propose two distinct

mechanisms for ¢, allowing for different inductive biases regarding feature interaction.

Option 1: MLP Parameterization. For architectures prioritizing global feature mixing with low
computational overhead, we parameterize k using a Multi-Layer Perceptron (MLP) acting on
aggregated statistics of the state matrix.

- k
knep = MLP(Pool(X)),  kyrp = =0 —— (A.1)
|l kmrpll2 + €k

Here, Pool(+) is any aggregation that produces a fixed-size vector representation of X, e.g., column-
wise averaging (R¥% — R%) or flattening (R¥*% — R%¥4v), followed by an MLP that outputs R?.
We enforce Ly normalization (with a small €, > 0 for numerical stability) to satisfy the spectral
assumptions in Theorem 3.1.

Option 2: Attention-based Parameterization. To capture more granular dependencies within the
value dimension, we can employ attention mechanism.

A.2 Parameterization of the Gate 5(X) and Value v(X)

The Gating Branch. The scalar gate 8 requires a bounded output in [0,2]. We maintain a
lightweight design for this estimator:

B(X) =2 o (w} tanh(Wi,Pool(X))) (A.2)

where o is the sigmoid function, ensuring smooth interpolation between identity, projection, and
reflection.

11



The Value Branch. The residual value vector v € R% represents the content update. This
branch, F : R4*% — R allows for flexible design choices. In our experiments, we utilize the same
architecture chosen for the main backbone (e.g., if DDL is applied in a Transformer, F mirrors the
Feed-Forward Network or Multi-Head Attention block structure) to ensure capacity alignment.
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