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Large-scale autoregressive models pretrained on next-token prediction and finetuned with reinforcement learning (RL) have
achieved unprecedented success on many problem domains. During RL, these models explore by generating new outputs,
one token at a time. However, sampling actions token-by-token can result in highly inefficient learning, particularly when
rewards are sparse. Here, we show that it is possible to overcome this problem by acting and exploring within the internal
representations of an autoregressive model. Specifically, to discover temporally-abstract actions, we introduce a higher-order,
non-causal sequence model whose outputs control the residual stream activations of a base autoregressive model. On
grid world and MuJoCo-based tasks with hierarchical structure, we find that the higher-order model learns to compress
long activation sequence chunks onto internal controllers. Critically, each controller executes a sequence of behaviorally
meaningful actions that unfold over long timescales and are accompanied with a learned termination condition, such that
composing multiple controllers over time leads to efficient exploration on novel tasks. We show that direct internal controller
reinforcement, a process we term “internal RL”, enables learning from sparse rewards in cases where standard RL finetuning
fails. Our results demonstrate the benefits of latent action generation and reinforcement in autoregressive models, suggesting
internal RL as a promising avenue for realizing hierarchical RL within foundation models.

We are witnessing a revolution in artificial intelligence (AI),
driven primarily by autoregressive sequence models. These
models, most often built with transformers [1], are trained
using self-supervised next-token prediction on datasets
of unprecedented scale [2]. After pretraining, finetuning
autoregressive models with reinforcement learning (RL)
yields agents with competence in a wide range of domains
and tasks, from mathematical problem solving, to being
helpful assistants in scientific and creative human endeav-
ors. Currently, there is great interest in leveraging RL as a
means to discover new intelligent behaviors, beyond those
present in the original training data [3].
RL efficiency can be greatly increased by starting from

an autoregressive sequence model that has been pretrained
on a wide range of behaviors, such as a large language
model (LLM). From an RL standpoint, self-supervised pre-
training can be seen as imitation learning under partial
observability, where not only is noise introduced and in-
termediate steps occluded, but also latent variables, such
as task descriptors, agent rewards and goals, and their
mental states, are unknown. This setup imbues the re-
sulting models with latent variable inference capabilities
[4, 5] (commonly referred to as in-context learning [6])
that allow adapting to new tasks and environments quickly.
Moreover, pretrained autoregressive models serve as rich
action priors from which diverse, meaningful sequences
can be sampled, enabling efficient exploration from the
start.
Efficient, long-horizon exploration is key for RL to suc-

ceed, in particular when rewards are sparse. This leads
us to an important problem that autoregressive models
face: because these models produce sequences one token
at a time, RL exploration is driven entirely by token-level
variations. However, solely relying on token-by-token vari-
ability to explore can be insufficient to make progress on

hard, sparse-reward problems which require generating
multiple tokens correctly before obtaining a reward. This
observation, which is at the center of the present study,
has motivated a long line of research on hierarchical RL.
Hierarchical RL attempts to exploit the fact that real-world
problems are typically amenable to a hierarchical approach,
wherein a final solution is expressed in terms of temporally-
abstract actions — i.e., reusable subroutines that run for
extended time periods (sometimes called “options”) [7].
Evidence suggests that humans approach problem solv-
ing using such temporal abstractions [8], which implies
that this may be a very efficient way to learn. Importantly,
if temporally-abstract subroutines exist, exploration can
occur at higher levels of temporal abstraction, drastically
reducing the search space relative to token-by-token explo-
ration. However, discovering appropriate subroutines via
deep RL remains a longstanding challenge. While policy
gradient methods have been derived (e.g., the option-critic
[9]), these approaches have theoretical issues and tend
to fail in practice, often converging to degenerate options
[10].

In this paper, we pursue an alternative approach for
temporally-abstract action discovery that builds directly
upon autoregressive modeling. Based on their in-context
latent variable inference capabilities, we hypothesize that
autoregressive action models implicitly learn temporally-
abstract actions represented in their internal activations,
despite being trained to predict only one token at a time.
This hypothesis leads us to introduce an internal neural
network controller in charge of steering the internal ac-
tivations of a base model. Critically, the controller learns
through an unsupervised variational inference algorithm
[11–14], which does not require per-time-step abstract
action labels, in contrast to standard model steering tech-
niques [15, 16].
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Figure 1 | Research overview. (a) We let a metacontroller steer the residual stream activations of a pretrained autoregressive model.
Through self-supervised next-action prediction, the metacontroller discovers how to generate sequences of simple (linear) internal
controllers that change sparsely in time, following a dynamic switching unit 𝛽𝑡 ∈ [0, 1]. In hierarchically-structured tasks, each internal
controller corresponds to a temporally-abstract action that leads the base autoregressive model to achieve a meaningful elementary
goal. (b) We perform RL internally – in the abstract space discovered by the metacontroller – by subsuming the autoregressive model
into the environment and acting in the residual stream on a contracted timescale.

We evaluate our approach on a family of RL tasks that
are constructed in a hierarchical, compositional manner.
We consider both a classic discrete grid world environment
[17, 18], and a more challenging hierarchical continuous
control environment implemented on the MuJoCo physics
simulator [19]. The latter requires an agent to master both
low-level continuous motor control as well as planning at
a higher level of temporal abstraction to exploit the under-
lying discrete, compositional task structure. We find that
the internal controller discovers how to generate higher-
order sequences of temporally-abstract actions that switch
sparsely in time. These abstract actions enable efficient
exploration by drastically reducing the search space size
in novel tasks and simplify credit assignment by reducing
the effective time horizon of the policy. The final product
is a novel hierarchical RL method that directly reinforces
internal activations to solve sparse reward tasks that token-
level approaches cannot solve. Our results demonstrate
the benefits of latent action generation for RL applied to
pretrained autoregressive models.

Key results
We illustrate our approach in Fig. 1, and preview our main
contributions below:
• Next-action predictors inherently develop

temporally-abstract action representations. We
analyze transformers and state-space models (SSMs)
trained to autoregressively predict the actions of
goal-directed agents, whose goals are unknown. We
find that the networks learn to represent (and infer
in-context) a belief about an agent’s goals in their
residual stream activations.

• Linearly controllable temporally-abstract actions.
These temporally-abstract representations are also eas-
ily controllable: a linear residual stream controller
near mid-depth suffices to turn the sequence model
into a closed-loop goal-optimizing policy, capable of
executing a long-horizon plan.

• Compositional generalization in the residual
stream. We show that such controllers can be se-

quenced in time. Residual stream controller sequenc-
ing enables compositional generalization, yielding
agents that combine multiple goals in ways not seen
during training.

• A new neural architecture for autoregressive model
control, which discovers temporally-abstract ac-
tions without supervision. We develop a metacon-
troller neural network that reads from the sequence
model residual stream, and in return applies a linear
controller to it. The metacontroller learns to generate
goal-optimizing controllers that exhibit temporal ab-
straction: it keeps applying the same controller for a
variable number of time steps before switching to a
new one. To discover appropriate temporally-abstract
actions without any supervision signals, our method
relies on two key properties: (i) reading from and
writing back to the residual stream of a pretrained
autoregressive model, and (ii) future-conditioning:
during training, the metacontroller is non-causal, and
is conditioned on a sequence embedding obtained by
performing a first pass through the entire sequence.

• A new “internal RL” paradigm, many orders of
magnitude faster than standard RL finetuning in
hierarchically-structured tasks. We introduce inter-
nal RL: performing RL directly within the residual
stream of the base model, taking internal activations
as observations and metacontroller outputs as actions.
We show that internal RL significantly outperforms
both standard RL finetuning as well as a strong prior
hierarchical RLmethod [CompILE; 17], achieving both
higher initial success rates and more efficient credit as-
signment than the baseline methods in hierarchically-
structured tasks.

Results
Linearly controllable abstract action representations
emerge in autoregressive models
Before diving into the description of our internal RL model,
we first analyze the internal activations of autoregressive
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models pretrained to predict the behavior of goal-directed
agents. Our goal here is to verify that a model trained on
next-token prediction can learn temporally-abstract actions
in its internal activations that we can leverage for inter-
nal RL. To do this, we pretrain our models from scratch
on a behavioral dataset 𝐷 comprising observation-action
sequences produced by different expert agents that solve
tasks via stochastic policies of varying degrees of optimal-
ity. The autoregressive model can thus be thought of as
a sequence model of likely observation-action trajectories.
Each element of 𝐷 is a sequence (𝑜1, 𝑎1, . . . , 𝑎𝑇 , 𝑜𝑇+1) com-
prised of the initial sensory observations 𝑜1, actions 𝑎𝑡 taken
by an agent and resulting sensory observation 𝑜𝑡+1 at time
steps 𝑡 ∈ {1, . . . , 𝑇}. Like behavioral datasets collected at
scale (e.g., those used to train LLMs), 𝐷 does not contain
rewards, nor any explicit agent goal and task descriptors.
The analyses presented in this section seek to determine if,
and how, autoregressive models infer abstract patterns in
long-horizon, goal-directed action sequences.
We collect behavior from two classes of environments

where agents perform navigation tasks. Importantly, the
tasks are hierarchically-structured (cf. Fig. 2): though ba-
sic movement skills are a prerequisite, any given task
can be solved with a combination of sub-routines com-
posed of common sequences of basic movements. More
concretely, we study both a discrete grid world environ-
ment that was previously introduced as a testbed for hier-
archical RL [17, 18], as well as a continuous-observation,
continuous-action adaptation implemented by us in the Mu-
JoCo physics simulator [19], where a quadrupedal robot
(the ‘ant’ [20, 21]) must be controlled at joint-level. In
both environments, an agent needs to follow a course that
arrives at certain colored locations in a specific order. In
other words, the agents need to navigate between subgoals
while also ignoring distractors (non-goal colored locations),
all while avoiding collisions with randomly placed walls.
Any task is described by a sequence of subgoals, which are
either a single colored location for the ant, or two consec-
utive colored locations for the grid world. A given task
can be mapped to different spatial configuration of the
subgoals, the distractors, and the walls, see Appendix A
for more details on the environments. In these environ-
ments, abstract actions are equivalent to moving towards
a specific subgoal, hence we use the terms “abstract action”
and “subgoal” interchangeably in this paper.
Given behavioral data collected for a set of easy tasks,

referred to as pretraining tasks set (see Appendix A and C.1
for more details on the tasks and how the behavioral data
are collected), we proceed with autoregressive sequence
model pretraining, here a standard causal transformer [1]
for discrete grid world data, and an efficient SSM (Hawk
[22]) for ant control data. The models are pretrained from
scratch by minimizing the cross-entropy

𝐿(𝜃) =
∑︁

(𝑜1:𝑇+1,𝑎1:𝑇 )∼𝐷

𝑇∑︁
𝑡=1
− ln 𝑝𝜃(𝑎𝑡 |𝑜1:𝑡) − 𝜆 ln 𝑝𝜃(𝑜𝑡+1 |𝑜1:𝑡),

with 𝑝𝜃 the sequence model, and 𝜃 its parameters. For the
case of continuous actions, the likelihood 𝑝𝜃(𝑎𝑡 |𝑜1:𝑡) is mod-
eled as a Gaussian with learned diagonal covariance matrix.
For discrete actions, the likelihood is parameterized as a
categorical distribution with probabilities provided by the
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Figure 2 | Environment and task design. (a) To complete a
task, an agent must visit in sequence a number of subgoal loca-
tions, each marked with a specific color. The tasks are performed
either in a discrete grid world or in a continuous motor control
environment, illustrated above, where a quadrupedal robot (the
‘ant’) must be actuated at joint level. A task can be described
as an abstract action sequence (the subgoal locations that must
be visited), or as a sequence of low-level motor commands. (b)
We pretrain autoregressive action models and metacontrollers
on unlabeled behavioral datasets containing observation-action
sequences of expert agents performing different tasks. These
sequences do not contain rewards or subgoal labels. We then test
the ability of the models to learn with RL tasks that comprise
longer subgoal sequences, combined in new orders not seen dur-
ing pretraining and metacontroller training.

softmax over the output logits. Note that while the main
objective here is behavioral (next-action) prediction, the
models are also trained on next-observation prediction,
the objective of world (dynamics) modeling [23–25]. The
weight of this auxiliary loss is determined by a scalar hy-
perparameter 𝜆 ≥ 0; we analyze its role in the Appendix
Fig. A2. Additional optimization and architectural details
may be found in Appendix C and D.
To determine whether the internal activations of the

pretrained autoregressive models learn to identify tempo-
ral abstractions related to the subgoals, we analyze the
internal activations of the models using two common mech-
anistic interpretability techniques [26], linear probing [27]
and causal model intervention [28, 29]. For the former
(linear probing), we train linear classifiers to decode the
agent subgoals 𝑔𝑡 ∈ {1, . . . , 𝐺} on the grid world environ-
ment from the instantaneous (time step 𝑡) residual stream
activation vector 𝑒𝑙,𝑡 ∈ ℝ𝑛𝑒 after the 𝑙-th model block. Fig. 3
shows that linear decoder probability mass concentrates
on the correct latent subgoal as time 𝑡 increases, i.e. as
more evidence about the current agent subgoal is gathered.
Moreover, linear decoding likelihood increases with layer
depth 𝑙, peaking close to the final embedding used by the
transformer decoder. Thus, despite being trained only on
one-step action prediction, the autoregressive models learn
to represent temporally-abstract subgoals. This result is
in line with the infinite-data theory of in-context Bayesian
inference in sequence predictors [30], and adds more ev-
idence to the linear representation hypothesis in neural
sequence models [31–33].
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Figure 3 | Internal belief distributions over abstract actions,
according to a linear probe. Decoding performance of linear
classifiers trained to predict groundtruth abstract actions from
instantaneous residual stream activation vectors increases until
mid-depth (layer 4) and remains strong up until the final embed-
ding vector 𝑒𝑡,𝐿 (here 𝐿 = 6).

For causal model intervention, we ask whether the in-
ternal representations of the autoregressive model can be
leveraged to create a subgoal-optimizing policy. Inspired
by the effectiveness of LoRA finetuning [34], we introduce
a low-rank linear residual stream controller with parame-
ters 𝑈 ∈ ℝ𝑛𝑒×𝑛𝑒 , which modifies the instantaneous residual
stream activations in between model blocks at a given
depth 𝑙 following the update

𝑒𝑡,𝑙 ← 𝑒𝑡,𝑙 + 𝑈𝑡𝑒𝑡,𝑙 . (1)

Note that we allow the controller parameters 𝑈𝑡 to vary
in time. In this section, we maintain a set of 𝐺 separate
controllers {𝑈 (𝑔) }𝐺

𝑔=1, one per subgoal, and manually select
which controller 𝑈𝑡 to apply at every time step 𝑡 using the
groundtruth subgoal label 𝑔𝑡. (We will eliminate the use
of ground-truth subgoal labels later on.) To train the con-
trollers, we condition generation upon the correct subgoal-
specific controller 𝑈 (𝑔) , and minimize the cross-entropy∑
(𝑜1:𝑇+1,𝑎1:𝑇 )∼𝐷∗

∑
𝑡 − ln 𝑝𝜃,𝜙(𝑎𝑡 |𝑜1:𝑡, 𝑔𝑡) w.r.t. controller pa-

rameters 𝜙 (while holding 𝜃 fixed) on a behavioral dataset
𝐷∗. This dataset contains behavioral sequences that are gen-
erated in the same way as those in the pretraining dataset
𝐷, but with increased optimality, see Appendix C.4.4. Here
and throughout, 𝜙 refers to controller parameters that
were not part of the pretrained model 𝑝𝜃, and 𝑝𝜃,𝜙 denotes
a controlled model.

We evaluate the subgoal-optimizing controllers on a post-
training OOD task set that requires both length and compo-
sitional generalization: as shown in Fig. 2 and detailed in
Appendix A, the post-training tasks recombine subgoals in
orders not seen neither during pretraining nor controller
training. As well, they comprise longer subgoal trajecto-
ries. Fig. 4 shows that these novel tasks can be solved
with a high success rate by simply activating the corre-
sponding subgoal controllers in the correct order, without
any autoregressive sequence model retraining. More de-
tailed descriptions of these mechanistic interpretability
experiments and some additional experimental results are
presented in Appendix B and C.

Our analysis further reveals a distinction between latent
variable belief state representation (at least w.r.t. a linear
decoder) and internal representation control. Whereas
linear subgoal decoding is possible from mid-depth up un-
til the final layer, subgoal-conditioning is best achieved
by inserting a linear controller in the middle of the pre-
trained sequence model, see Fig. 4. There is an intuitive
appeal to this result: the mapping from abstract subgoals
spanning many time steps to actual per-time-step low-level
actions is implemented over multiple model layers. Our
findings join two recent studies [35, 36] that identify the
first half of language models as the strongest for transfer
learning, and as exerting the strongest influence on pre-
dicting future tokens. Given these results, in what follows,
and unless noted otherwise, controllers always read from
and write back to the residual stream at mid-depth of the
autoregressive sequence model.

Unsupervised metacontroller discovers temporally-
abstract actions within autoregressive models
The analyses above show that simple internal activation
controllers can steer a pretrained next-action sequence
model to execute temporally-abstract actions, here navi-
gation to a sequence of subgoals. We have so far assumed
access to subgoal labels, similarly to how current model
steering methods [37] are trained using detailed supervi-
sion information (e.g., on the truthfulness of an answer
[38] or on personality traits [39]). We now turn to the chal-
lenging unsupervised setting with no groundtruth labels,
where the model must both discover temporally-abstract
actions from an unlabeled behavioral dataset 𝐷, and learn a
selection mechanism that generates appropriate sequences
of subgoals, and related abstract actions, in order to achieve
a larger goal.

To simultaneously learn abstract actions and orchestrate

a b

Figure 4 | Mid-depth linear internal controllers achieve length
and compositional generalization. Both panels analyze success
rate (the fraction of rewarded trials in which the full sequence of
elementary goals defining a given task is completed) as a function
of base model depth (the number of autoregressive model layers)
and controlled layer (the layer at which the internal controller is
inserted, with 0 corresponding to the middle of the base model).
In both grid world (a) and ant (b) environments, inserting the
controller near the middle layer results in better controllability,
as measured by the success rate on the post-training tasks, which
require both length and compositional generalization. To pro-
duce this analysis, we trained one controller per subgoal using
groundtruth labels; to evaluate success rates we activated the
controllers in correct order, again using groundtruth subgoal la-
bels. Results averaged over 5 seeds.
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their execution, we freeze the autoregressive model after
training on 𝐷, then we augment it with a metacontroller
that can generate the controllers, 𝑈𝑡, for the residual stream
activations in the sequence model. As before, we continue
training on 𝐷∗ with 𝜃 fixed. But, now, we do not condi-
tion the controller on the groundtruth subgoal — instead
the metacontroller learns how to generate the appropri-
ate controllers at the appropriate times. We describe the
model in full in Appendix D.2, and illustrate it in Fig. 5.
Briefly, the metacontroller is a generative stochastic recur-
rent neural network with an encoder-decoder architecture
that enables sampling controllers sequentially. Because it
outputs the parameters 𝑈𝑡 of a controller and not directly a
control vector, the metacontroller can be qualified as a re-
current hypernetwork [40]. The decoder is a feedforward
network that produces a controller, 𝑈𝑡, from a controller
code, 𝑧𝑡. The encoder is a recurrent network based on the
gated recurrent unit [41] that specifies the mean 𝜇𝑡 and
variance Σ𝑡 of a Gaussian distribution over a random con-
troller code 𝑧̃𝑡 ∼ N(𝑧enc; 𝜇𝑡, Σ𝑡). Importantly, the encoder
is non-causal, because it receives an embedding, 𝑠(𝑒1:𝑇 ),
of the whole sequence of latent activities. We justify such
future-conditioning using a formal latent variable modeling
argument in Appendix E.1.

Meta-
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Model block l+1
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Figure 5 | Details of the metacontroller architecture and the
different modules at play. The metacontroller learns in a self-
supervised way to generate sequences of internal controllers.
Candidate controller codes 𝑧̃𝑡 are sampled from a Gaussian with
context-dependent mean and covariance, and are integrated at a
continuous, time-varying rate 𝛽𝑡, dynamically determined by a
switching unit. Values of 𝛽𝑡 close to zero ignore new controller
candidates; conversely, values close to unity lead to switching to
a new controller. This mechanism is key for achieving temporal
abstraction. The metacontroller features another key design
element, a future-conditioned encoder: during self-supervised
learning, the metacontroller is non-causal, and has access to the
entire sequence of residual stream activations through a sequence
embedding 𝑠(𝑒1:𝑇 ).

Additionally, the metacontroller includes a recurrent
switching unit, that operates between the encoder and
decoder. This unit determines a time-varying continuous
switching gate 𝛽𝑡 ∈ [0, 1], which controls the interpolation
between previous controller code 𝑧𝑡−1 and a new sampled
code 𝑧̃𝑡:

𝑧𝑡 = 𝛽𝑡 ⊙ 𝑧̃𝑡 + (1 − 𝛽𝑡) ⊙ 𝑧𝑡−1, (2)

where ⊙ denotes elementwise multiplication. Despite its
simplicity, this temporal integrator is critical for the meta-
controller to learn to generate the appropriate temporally-

abstract actions, as we will confirm through ablation ex-
periments at the end of this section.
The metacontroller parameters 𝜙 are trained through

the minimization of a self-supervised learning objective,
comprising (low-level) next-action prediction and an addi-
tional prior-matching regularizer,

𝐿(𝜙) =
∑︁

(𝑜1:𝑇+1,𝑎1:𝑇 )∼𝐷∗

𝑇∑︁
𝑡=1

[
− ln 𝑝𝜃,𝜙(𝑎𝑡 |𝑜1:𝑡, 𝑧1:𝑡)

+ 𝛼𝐷KL
(
N(𝜇𝑡, Σ𝑡) ∥ N (0, 𝐼)

) ]
,

(3)

where 𝐷KL (· ∥ ·) denotes the Kullback-Leibler divergence
[42]. The inclusion of this regularizer (with weight deter-
mined by the hyperparameter 𝛼 ≥ 0) promotes the gener-
ation of meaningful sequences when sampling controller
codes 𝑧𝑡 from a standard normal distribution, a property
that we exploit in the next section to develop a novel hi-
erarchical RL algorithm. From an information-theoretic
perspective, 𝛼 also controls the variational bottleneck by
regulating the information flow from the acausal encoder
to the controller. As shown in our later analysis, this bot-
tleneck is instrumental in driving the model toward sparse,
subgoal-aligned switching patterns that mirror the under-
lying task structure. Moreover, the choice of an uncondi-
tional prior (i.e., where next abstract action proposals are
independent of past ones) promotes the development of
compositional representations, which match well our hier-
archical tasks. In Appendix E.1, we derive Eq. 3 formally
using a variational information-theoretic approach [43].
The derivation is standard, and follows closely previous
calculations for stochastic recurrent models [e.g., 44, 45].
Ultimately, the metacontroller both discovers the

temporally-abstract actions that underlie the observed
agents’ behavior, and learns to sequence them appropri-
ately in time by implementing respective termination con-
ditions via the switching gate. In Fig. 6 and A3, we analyze
the residual stream controllers discovered by the meta-
controller by plotting the switching gate values 𝛽𝑡 against
groundtruth abstract actions 𝑔𝑡. We find that the metacon-
troller recovers the groundtruth abstract action switching
times. After training, the switch gate learns to behave in a
quasi-binary, sparsely-switching fashion, despite not being
explicitly regularized to do so. This is a notable finding in
light of the critical role that switching regularization meth-
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Figure 6 | Self-supervised metacontroller discovers
temporally-abstract actions within pretrained autoregressive
model. Three example trajectories from the ant control
environment showing the switch 𝛽𝑡 used for temporal integration
at each timestep, and the groundtruth abstract action being
performed (color-coded). Switching (𝛽𝑡 ≈ 1) coincides with a
change in the abstract action being performed.
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ods play in hierarchical RL [46], and given the simplicity
of the temporal integrator (Eq. 2). The resulting temporal
segmentation is essentially perfect, despite the fact that
both observations and actions are continuous for the ant
environment. Moreover, the metacontroller learns to gener-
ate latent controller codes which correspond to meaningful
temporally-abstract actions (e.g., “go to color blue”), that
generalize to new task configurations and switching times
(see Appendix B.3.2 for an analysis).

We next study what happens when the autoregressive
base model parameters 𝜃 are not kept frozen, and instead
co-trained with metacontroller parameters 𝜙 through varia-
tional inference (the minimization of Eq. 3, now w.r.t. both
𝜃 and 𝜙). This baseline is conceptually close to previous
hierarchical RL methods that use variational inference to
learn abstractions from unlabeled demonstrations (e.g.,
[17, 18]), while using our particular neural network archi-
tecture. To compare the abstract action representations
developed when the base model is frozen vs. when it is not,
we resort to a rate-distortion analysis [43], obtained by
varying the value of the hyperparameter 𝛼 (which controls
the rate-distortion trade-off in Eq. 3) over a wide inter-
val, see C.6 for additional details. We trace rate-distortion
curves for both our standard metacontroller (which steers
a pretrained, frozen autoregressive model) and for the
co-trained metacontroller, see Fig. 7.
Intriguingly, we find that a horizontal gap appears on

the rate-distortion curve between metacontrollers with
subgoal-aligned switching (with rate-distortion points
marked by a ★ symbol in Fig. 7), and those with slightly
less rate. This indicates that at that rate level, a small
increase in rate dramatically improves the distortion. In
contrast, for the co-trained metacontroller, although the
variational objective is minimized, this structure is lost. For
most values of 𝛼, the model converges to a degenerate solu-
tion characterized by a single switch at the very beginning
of the sequence. The fact that subgoal-aligned switching
corresponds to this improved distortion with frozen autore-
gressive models, but not with co-trainedmodels, shows that
pretraining builds an internal representation that aligns
well with abstract actions. Furthermore, this also has opti-
mization implications: for a given value of 𝛼, the variational
objective (Eq. 3) is minimized on the point of the rate dis-
tortion curve which has a tangent of slope −1/𝛼. A gap
like the above, with a slope discontinuity, indicates that
for a large range of values of 𝛼, the variational objective
is minimized precisely at the region with subgoal-aligned
switching. This analysis therefore confirms that controlling
a frozen autoregressive action predictor is essential for the
discovery of temporally-abstract actions.
Taken together, the results presented in this section

provide strong evidence that our model can both learn
temporally-abstract actions and how to sequence them ap-
propriately, all in a self-supervised manner. We will see
next how this model can be leveraged to speed up explo-
ration in new, harder tasks by many orders of magnitude,
enabling sparse-reward RL to succeed.

Internal reinforcement learning
Finally, we consider the question of how to leverage our
model to learn harder tasks through hierarchical RL. We
study only the challenging sparse-reward setting, where

ba

dc

Figure 7 | A rate-distortion analysis reveals the importance of
the controlled, pretrained autoregressive model being frozen
for the discovery of temporally-abstract actions. We compare
our standard metacontroller, which steers a frozen base model
(left column; a, c), with a metacontroller that is co-trained with
the base model it is steering (right column; b, d). The x-axis
represents action prediction loss (the distortion, or negative log-
likelihood; NLL) and the y-axis represents the KL divergence to
the prior (the rate). As the trade-off hyperparameter 𝛼 in Eq. 3
is swept over to trace the rate-distortion curve, it reveals a range
of values for which correct subgoal switching representations
develop (marked with a ★) when the base model is frozen, but
not for the co-training regime. This holds similarly for grid world
(top row; a, b) and the ant environment (bottom row; c, d).

a single positive success reward is provided per trajectory,
and only when an entire sequence of subgoals is correctly
completed.

We begin this section by establishing that our tasks (de-
scribed in Fig. 2) are difficult for standard RL approaches
to post-training. We first study an adapted version of the
GRPO algorithm [3], which is a strong baseline in the
sparse-reward setting. The details of our GRPO imple-
mentation can be found in Appendix C.5.2. For the tasks
considered here, training an agent from scratch directly
with RL has, for all practical purposes, no chance of suc-
ceeding. Thus, to make the comparison fair, we instead
apply GRPO to the pretrained autoregressive sequence
model, as is now routinely done with LLMs. However, even
with a pretrained sequence model that has been trained
on action sequences related to the subgoals, there is only
a minuscule chance (on the order of one in a million) of
producing successful trajectories by random sampling at
the output token-level. This causes GRPO training to fail,
as the model does not receive enough signal to learn, see
Fig. 8. An inspection of the action sequences generated by
the autoregressive sequence model reveals that while the
model reproduces action sequences seen in the training
data, it fails to explore at a higher level of temporal abstrac-
tion, which would be required to solve these sparse reward
RL tasks. In other words, simply training the sequence
model with policy gradients does not lead the system to
explore novel combinations of subgoals.
Having shown that standard post-training RL fails, we

now introduce internal RL. The key step in internal RL is
to treat the autoregressive sequence model as part of the
environment; actions then correspond to residual stream
interventions, 𝑢𝑡, and observations correspond to residual
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stream activations, 𝑒𝑡,𝑙. We note that performing RL at
the residual stream level is a priori challenging. Consider
the problem of learning from scratch a policy 𝜋(𝑢𝑡 | 𝑒1:𝑡)
whose outputs 𝑢𝑡 ∈ ℝ𝑛𝑒 additively control the residual
stream, 𝑒𝑡,𝑙 ← 𝑒𝑡,𝑙 + 𝑢𝑡, without relying on error backpropa-
gation to differentiate through the base model that is being
controlled. This is a high-dimensional continuous control
problem, an exceedingly difficult setting for RL [47].

Instead of directly attempting to learn a residual stream
control policy, internal RL consists of doing RL in the con-
troller code space of 𝑧, after the metacontroller is trained
in a self-supervised manner, as described in the previous
section. This approach assumes that the metacontroller
has learned a meaningful switching unit 𝑓switch, and a con-
troller code space such that 𝑧𝑡 ∼ N(0, 𝐼) is a meaningful
prior for sampling abstract actions. Intuitively, the meta-
controller does not suffer from the drawbacks of directly
doing RL in the residual stream for two reasons: (i) the
action space dimension is reduced (𝑛𝑧 < 𝑛𝑒), (ii) the meta-
controller operates on an abstract timescale, dramatically
reducing the time horizon for difficult environments. The
latter is the key property that can enable internal RL to be
more efficient and succeed on hierarchical, sparse reward
tasks where standard RL methods fail.

ba

Figure 8 | Internal reinforcement learning solves sparse-
reward compositional tasks where standard methods fail.
RL curves for various methods that leverage a pretrained autore-
gressive sequence model for the (a) discrete grid world envi-
ronment, and (b) the ant continuous control environment. We
compare our full-blown internal RL algorithm to a number of
baselines: standard (raw action) RL finetuning; CompILE [17], a
hierarchical RL method that also learns from unlabeled demon-
strations, like ours; internal RL applied to a metacontroller that
has been trained without a temporal integration unit (forced
switching at every timestep, ∀𝑡 𝛽𝑡 = 1); and internal RL applied
to a metacontroller that has been co-trained from scratch with an
autoregressive action model, sidestepping the pretraining phase
(see main text for more details). All baselines fail to learn within
a million episodes. Lines and shaded area resp. report median
and the spread between the 25th and 75th quantiles computed
over 30 runs (3 metacontrollers trained for each of 10 pretrained
models). We provide this figure in log-scale in Appendix Fig. A5
for a more detailed analysis of the failure modes of the baselines.

In more detail, internal RL consists in replacing an un-
supervised controller encoder which uses privileged fu-
ture information 𝑠(𝑒1:𝑇 ) by a causal abstract action policy

𝜋(𝑧𝑡 | 𝑒1:𝑡), and then training it through RL, while keeping
all other modules and their parameters fixed. Conceptually,
this amounts to subsuming the autoregressive model, as
well as part of the metacontroller, into the environment (cf.
Fig. 1). To generate discrete switching events, we further
apply a threshold to binarize the switching rate, i.e., we
replace 𝛽𝑡 in Eq. 2 by 𝐻 (𝛽𝑡 − 𝛽threshold) with 𝐻 the Heav-
iside step function and 𝛽threshold ∈ ℝ a hyperparameter.
This way, until a switch signal (𝛽𝑡 = 1) is emitted by the
metacontroller, the same abstract action is applied, thus
allowing 𝜋 to operate on a temporally-abstract timescale.
Pseudocode for the internal RL environment and algorithm
is provided in Appendix C.5.1.
Fig. 8 shows that internal RL achieves a high success

rate on the post-training task set. Leveraging the temporal
abstractions discovered through self-supervised metacon-
troller learning is crucial for this success, as shown by the
failure of a metacontroller for which the temporal integra-
tion unit is disabled (∀𝑡 𝛽𝑡 = 1). To give this baseline a fair
chance, this ablation is introduced during self-supervised
metacontroller learning, not just when performing post-
training RL. We note that the 𝛽𝑡 = 1 ablation also achieves
a high initial success rate; this can be seen when plotting
success rates in log-scale (cf. Appendix Fig. A5). However,
only our full-blown (temporally-abstract) internal RL both
achieves high initial success rates and performs efficient
credit assignment, such that RL succeeds. In Appendix E.2
we present a mathematical argument for the efficiency of
credit assignment in internal RL, comparing the variance
of the resulting policy gradients of internal against RL in
raw action space.
Moreover, to evaluate the internal abstractions devel-

oped through autoregressive action modeling, we compare
again to the co-trained baseline, where both metacontroller
and basemodel are jointly optimized through theminimiza-
tion of Eq. 3. Consistent with the rate-distortion analysis
results (Fig. 7), the success rate of post-training internal
RL remains close to zero. The same holds for CompILE
[17], a comparable, previously proposed hierarchical RL
method that also relies on variational inference to discover
temporally-abstract actions from an unlabeled behavioral
dataset. These results again confirm the importance of the
initial autoregressive foundation model pretraining phase,
followed by base model freezing, for enabling efficient hi-
erarchical RL.

Discussion
In this work, we asked whether the latent representations
of autoregressive sequence models could be leveraged to
develop RL techniques that overcome the inefficiency of
token-by-token exploration and reinforcement. We studied
this question using tasks that contain multiple subgoals that
can be composed together to create the ultimate goal of
the task. We first showed that an autoregressive sequence
model trained on action and observation sequences from
agents trained on simpler versions of the tasks learn rep-
resentations in their hidden layers that carry information
about the subgoals. Next, we demonstrated that these la-
tent representations in the sequence model can be used by
a set of internal controllers, provided with the groundtruth
subgoals, to solve more complex tasks by compositionally
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generalizing in time. We then developed a model that uses
a metacontroller to select appropriate temporally-abstract
actions without receiving the groundtruth subgoal labels.
Finally, we showed that directly reinforcing the internal
activation controllers generated by the metacontroller en-
ables learning in more complex, hierarchical sparse-reward
tasks where other RL techniques fail. Altogether, our re-
sults demonstrate that the latent representations of au-
toregressive sequence models can indeed be leveraged to
enable efficient, hierarchical RL.
There is a long-running debate on whether autoregres-

sive next-token predictors can form consistent temporal
abstractions and plans [48], with some researchers dis-
missing them as “stochastic parrots” [49]. Our work adds
a positive piece of evidence to this question. We chose
to study a set of RL environments that fulfill a few key
properties we associate with intelligent agents. For an
agent to master these environments, it must be able to (i)
recombine previous behaviors in novel meaningful ways,
(ii) learn from sparse rewards, and (iii) overcome reward
sparsity by leveraging imitation learning to infer and repur-
pose the goal-directed behaviors of other agents. Learning
from sparse rewards is arguably the ultimate setting for
reinforcement learning, encompassing problem domains
ranging from mathematical reasoning and robotic manipu-
lation to scientific discovery in their most ambitious forms.
Solving such tasks without reliance onmanual reward shap-
ing is a critical step toward autonomous agents capable of
navigating complex, open-ended search spaces where the
definition of intermediate progress is often unknown.
Despite their simplicity, the environments are challeng-

ing enough for standard RL methods to fail, including
GRPO (a recent but by now standard method for sparse-
reward tasks), as well as CompILE, a previous hierarchi-
cal RL algorithm [17] that attempts to discover abstract
actions from raw unlabeled data, instead of the internal
representations of an autoregressive sequence model. The
overwhelming success of internal RL over baseline RL algo-
rithms reported here must still be taken with care, however,
given the controlled nature of our experimental setup. In-
vestigating and adapting internal RL to larger-scale models
and tasks is an important direction of future work.

A number of prior analyses have probed the internal rep-
resentations of autoregressive models, looking for temporal
abstractions and plans. A recent exciting study provided
compelling evidence for planning in LLMs asked to write
rhyming poems [50], and earlier probing work found that
hidden LLM states have some predictive power over a short
number (four) of future tokens [51]. Another line of prior
work has focused on models trained from scratch in con-
trolled environments, as we do here, notably in games such
as Othello [31, 52] or chess [53, 54]. To the best of our
knowledge, we are the first to consider continuous environ-
ments with a hidden, discrete, hierarchical task structure.
Despite being trained by gradient descent and only employ-
ing continuous units (both within the base SSM next-token
predictor and the metacontroller) the models nonetheless
discovered the underlying discrete latent task structure.
In particular, the metacontroller developed sparse, quasi-
binary switching units. Moreover, our findings complement
recent analyses of convolutional LSTM policies trained by
end-to-end RL to play the Sokoban game [55, 56]. These

studies showed that RL led to the development of planning
subroutines that unfold over multiple timesteps, like the
goal-reaching policies that we found within self-supervised
autoregressive models. We complement these studies by
focusing on autoregressive transformers and SSMs trained
on a next-token prediction objective, the current workhorse
of artificial intelligence systems.
Schmidhuber theorized in a seminal paper [57] that a

wake-sleep training loop iterating between training a his-
tory compressor through self-supervised learning (SSL),
and letting a controller use the internal representations
of the former to generate new experiences through RL,
would lead to the acquisition of evermore complex capa-
bilities, including the ability to form and exploit temporal
abstractions and plans. Here, we provide both a concrete
neural architecture following this philosophy, and a set of
experimental results backing these claims. Interestingly,
we begin to see the benefits of alternating between SSL
and RL in large-scale models. For instance, DeepSeek-R1
[3] training also involved one iteration of the RL-SSL cy-
cle, albeit with additional human curation involved in the
(post-RL) SSL phase, and with RL still done at (raw) output
action level.
Our model also displays similarities to LeCun’s joint

embedding predictive architecture [JEPA; 58]. In particular,
the metacontroller introduced here is similar to the JEPA
configurator module, as both are in charge of modulating
a general world model and policy in service of a given
goal or task. However, JEPA is a proposal for learning
abstract observation and action representations without
an autoregressive predictive model, whereas next-action
prediction is precisely at the center of our approach. In fact,
we show that learning a (raw) action predictor is partly
what enables discovering how to decompose a task into
a sequence of subgoals, one of the open problems in the
JEPA proposal.

The overwhelming advantage of internal RL over stan-
dard RL finetuning reported in this paper deserves further
investigation in real-world environments. A direction that
seems particularly worthy of pursuing is LLM reasoning.
There is growing interest in reasoning methods that lever-
age the internal representations of LLMs for reasoning,
mainly exploring recurrent iteration in neural activation
space [e.g., 59–62]. The metacontroller model presented
in our paper is complementary to these efforts, and may
itself benefit from additional recurrence. Instead, the key
innovation lies on the discovery of latent variables that com-
press time dynamically. This has the potential to cut the
search space in a reasoning problem and thereby increase
RL efficiency, as it did in a dramatic way in the problems
considered here. A first step in this direction was taken by
Kong et al. [63], who pretrained through variational meth-
ods a language model with a stochastic latent variable, and
already saw promising results on reasoning benchmarks.
Finally, our results open a new avenue for model inter-

pretability and control at scale. Similarly to sparse autoen-
coders (SAEs), a popular method for model interpretability
and steering, the metacontrollers introduced in this work
can be trained through scalable self-supervised learning
and employ an encoder-decoder-type architecture. How-
ever, the two models otherwise have significant differences.
While SAEs are trained on instantaneous internal activation
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reconstruction, metacontrollers are predictive and interven-
tive, trained to directly lower output next-token prediction
error by intervening on the residual stream. Moreover, they
maintain internal state, whereas SAEs are instantaneous.
Metacontrollers are thus by design likely better suited if
the goal is foundation model control, and they offer the
possibility of discovering interpretable interventions that
run over an extended period of time. We are excited about
the prospect of investigating whether these capabilities
translate to larger-scale models such as LLMs.
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A. Environment details
A.1. Gridworld-pinpad
Our grid world environment, referred to as gridworld-
pinpad in the Appendix, is inspired by the previously pro-
posed visual Pin Pad benchmark [64]. In our version, an
agent is located in a grid world, together with uniquely
colored cells (also referred to as objects). Within a task,
the agent needs to step on a sequence of colored cells in a
task-specific order.

A.1.1. Markov decision process specification
• Task: A task is specified by a sequence of colored cells

to visit.
• State: The world is a 2D grid of size 𝐺-by-𝐺. There are
𝑂 unique colored cells placed on the grid, as well as𝑊
walls. At any given moment, the agent occupies one
of the 𝐺2 −𝑊 cells that are not wall cells. Finally, the
environment state also keeps track of what colored
cells the agent has visited so far in the episode.

• Action: There are 4 actions corresponding to the 4
cardinal directions.

• Dynamics: Given the action and the agent position,
the agent moves to the corresponding direction, except
when it is moving towards a wall cell or outside of
the grid, in which case the action results in a no-op.
A colored cell is considered visited when the agent
moves onto the cell from a different cell. If the agent
successfully visits all colored cells in the right order,
or if the agent visits a colored cell that is not the next
cell specified by the task, or if the episode lasts longer
than 𝑇 steps, the episode ends.

• Initial state: At the beginning of every episode, the
colored cells and walls, as well as the initial agent
position are randomly sampled on the grid, ensuring
there is no overlap.

• Observation: The agent’s observation is the one-hot
encoding of which object/wall is present in each cell,
as well as the one-hot vector corresponding to the
position of the agent, resulting in a 𝐺2 (𝑊 + 𝑂 + 1)-
dimensional vector.

• Reward: The agent gets a reward of 1 when success-
fully completing the task, and 0 otherwise.

A.1.2. Task specification and hyperparameters
For both pretraining and post-training tasks, we use 𝐺 = 7,
𝑂 = 8, 𝑊 = 4, and 𝑇 = 100.

Numbering the colors from 0 to 7, the list of pretraining
tasks can be found in Table A1. In this setup, the abstract
subgoals combined to comprise the compositional final
tasks, are given by 0 − 1, 2 − 3, 4 − 5, and 6 − 7.

We choose the post-training task to be 0− 1− 2− 3− 4−
5 − 6 − 7 − 0 − 1 − 2 − 3.

A.2. Ant-pinpad
Ant-pinpad is a continuous control counterpart of the afore-
mentioned gridworld-pinpad. The agent controls the clas-
sic MuJoCo ant [20], with the goal of stepping on a se-
quence of colored cells in a task-specific order.

0-1-4-5-0-1
0-1-4-5-2-3
0-1-6-7-2-3
2-3-0-1-4-5
2-3-6-7-2-3
2-3-6-7-4-5
4-5-0-1-4-5
4-5-0-1-6-7
4-5-2-3-6-7
6-7-2-3-0-1
6-7-2-3-6-7
6-7-4-5-0-1
0-1-6-7-4-5
2-3-0-1-6-7
4-5-2-3-0-1
6-7-4-5-2-3

Table A1 | Pretraining tasks for gridworld-pinpad. Each 𝑐0 −
...− 𝑐𝐿 list entry indicates a task consisting in visiting in order the
colors 𝑐0, 𝑐1 . . . 𝑐𝐿 for some length 𝐿.

A.2.1. Markov decision process specification
• Task: A task is specified by a sequence of colored cells

to visit.
• State: The state is a 2D plane, divided into grids. The

grid is organized identically to that of the gridworld-
pinpad, and also includes colored cells and walls. The
state is further augmented by the proprioception state
of the ant, as well as the precise coordinate of the
center of the ant in the grid. Finally the environment
state also keeps track of what colored cells the agent
has visited so far in the episode.

• Action: The action is an 8-dimensional continuous
vector representing the torque applied to the ant’s
eight joints.

• Dynamics: Given the action, the ant moves on the
2D plane as usual. When the center of the ant enters
a wall cell or whenever the vertical position of the
ant’s torso falls outside the valid operational range
of [0.2, 1.0], an episode is instantly terminated. A
colored cell is considered visited when the ant enters
the cell from a different cell. If the agent successfully
visits all colored cells in the right order, or if the agent
visits a colored cell that is not the next cell specified
by the task, or when the episode lasts longer than 𝑇
timesteps, the episode ends.

• Initial state: At the beginning of every episode, the
colored cells and walls, as well as the initial agent
position are randomly sampled on the grid, ensur-
ing there is no overlap. We initialize the agent’s full
MuJoCo state by first setting the torso’s 𝑥, 𝑦 position
in the plane to the center of the sampled grid cell.
Then we add uniform noise that positions the agent in
the simulation anywhere within the boundaries of the
initial grid cell. We furthermore sample a random yaw-
rotation and turn the agent correspondingly. Finally,
the initial angles for all joints and initial velocities are
sampled uniformly at random within a small range of
0.1 units around zero.
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0-3-2
1-0-3
2-1-0
3-2-1
0-2-0
0-2-1
0-3-1
1-0-2
1-3-1
1-3-2
2-0-2
2-0-3
2-1-3
3-1-0
3-1-3
3-2-0

Table A2 | Pretraining tasks for ant-pinpad. Each 𝑐0 − ... − 𝑐𝐿
list entry indicates a task consisting in visiting in order the colors
𝑐0, 𝑐1 . . . 𝑐𝐿 for some length 𝐿.

• Observation: The observation consists of the usual
proprioception senses of the ant (to which the symlog
function was applied, to ensure no excessively large
values occur), concatenated with the global 𝑥, 𝑦 ant
coordinate (normalized to be between −1 and 1), as
well as the relative position of the various colored cells
and walls w.r.t. the ant, and the local coordinate of
the ant within the current cell.

• Reward: The agent gets a reward of 1 when the task
is successfully completed, and 0 otherwise.

A.2.2. Task specification and hyperparameters
For both pretraining and post-training tasks, we use 𝐺 = 4,
𝑂 = 4, 𝑊 = 1, and 𝑇 = 500.

The set of pretraining tasks can be found in Table A2.
We choose the post-training task to be 0 − 1 − 2 − 3.

B. Additional experimental results
B.1. Belief state probing
Fig. A1 displays the performance of linear probes predict-
ing latent subgoals from the residual stream activations of
a pretrained and subsequently frozen transformer in the
gridworld-pinpad environment. These linear probes are ob-
tained by following the procedure detailed in Section C.2.
Importantly, these subgoals are not explicitly encoded in
the data forced through the sequence model. Nonetheless,
throughout training on a large corpus of unannotated goal-
directed behavior the sequence model develops internal
representations of the subgoals. These internal represen-
tations get linearly decodable deep in the network (with
the accuracy jumping from 30% to about 50% roughly in
the middle of the model). Interestingly, close to the output
layer of the model (layer 6 in Fig. A1) the performance of
linear probes deteriorates when plugged into a backbone
trained beyond 100K steps.
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Figure A1 | Belief state probing at different network layers
and base model training steps. The latent goals governing the
behavior of the data forced through a frozen pretrained sequence
model become linearly decodable from residual stream activations
deep in the network. Here, we display the final accuracy of linear
probes trained to predict the latent goals from the residual stream
activations of a frozen 6 layer transformer. We vary the training
steps of the backbone and the layer at which the probe is plugged
into the sequence model and report the mean performance over
10 backbone seeds.

B.2. Effect of sequence model training hyperparame-
ters on the abstract action representations

In this section, we investigate the effect of various hyper-
parameter choices during sequence model training on the
internal abstract action representation of the base autore-
gressive model. For all experiments, we use the gridworld-
pinpad environment. We measure the quality of abstract
action representation following the procedure outlined in
Section C.3, and by evaluating the compositional general-
ization of the obtained controllers on post-training tasks.
For all experiments, we use the same hyperparameters as
detailed in Section C.3, unless specified otherwise. The
results are presented in Fig. A2.

Sequence model training steps. For all base autore-
gressive model depths (4,6 and 8), we notice that longer
sequence model training generally leads to better internal
abstract action representation, such that the controllers
generalize better to the post-training task set.

Sequence model training weight decay. For all base
autoregressive model depths, we notice that weight decay
during sequence model training is beneficial for internal
representation. Interestingly, too much weight decay also
degrades the representation, which points to a critical reg-
ularization trade-off that has been previously reported in
foundation models [65].

Observation auxiliary loss. Next, we observe that some
amount of auxiliary loss (i.e. training to predict the next ob-
servation as well as action) is beneficial to building internal
abstract action representation. With very low coefficient for
the auxiliary loss, we noticed that some models completely
failed to learn the representation; however we suspect this
behavior is an artifact of our particular environment rather
than a general trend.

Expert suboptimality. Finally, we investigate the effect
of the suboptimality of the demonstrations used during
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Figure A2 | Effect of sequence model training step (left), weight decay (center left), auxiliary observation loss (center right),
and expert suboptimality 𝜖 (right) during pretraining on the controllers’ compositional generalization. The solid line represents
the median performance over 10 runs, 1 seed for each of the 10 pretrained models, and the shaded area indicates the spread between
the 25th and 75th quantiles.
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Figure A3 | Self-supervised metacontroller discovers
temporally-abstract actions, gridworld-pinpad. Three exam-
ple trajectories from the gridworld-pinpad control environment
showing the switch 𝛽𝑡 used for temporal integration at each
timestep, and the groundtruth abstract action being performed
(color-coded). Switching (𝛽𝑡 ≈ 1) coincides with a change in the
abstract action being performed.

pretraining on the resulting abstract action representation.
We achieve this by replacing the expert policy by an 𝜖-noisy
one, where at every timestep, with probability 𝜖, a random
(non terminating) action is taken. We see that the abstract
action representation is robust against such suboptimality.

B.3. Unsupervised abstract action discovery
B.3.1. Temporal abstraction in the gridworld
In Fig. A3, we analyze the temporal abstraction discovered
in the gridworld-pinpad setting (c.f. Fig. 6 for the respective
ant-pinpad results), by plotting the switching gate values
𝛽𝑡 against groundtruth abstract actions 𝑔𝑡. Similarly to
the ant-pinpad setting, we find that the metacontroller
essentially recovers the groundtruth abstract actions by the
switch gate learning to behave in a quasi-binary fashion.

B.3.2. Quality of abstract actions
Figures A3 and 6 reveal that the temporal abstractions
discovered by the metacontroller during self-supervised
learning reflect the ground truth structure of the under-
lying task. In particular, the switching unit aligns with
compositional abstract subgoals governing the observed
data in a quasi-discrete fashion.

In this section, we focus instead on the controller latent
code 𝑧, and provide evidence that the latent space encodes
the actual subgoal-seeking abstract actions that constitute
the compositional task, in a context-agnostic manner. To
achieve this, we focus on the ant-pinpad environment, and

follow the following procedure:

1. For a handful of grid configurations, we first perform
an unconditioned rollout, i.e. a rollout in the envi-
ronment using the sequence model and the trained
metacontroller while sampling the 𝑧 from the Gaus-
sian prior, instead of the variational distribution.

2. Next, for each object, we consider unconditioned roll-
out trajectories that correspond to the agent visiting
that object (and nothing else), and collect the latent
codes 𝑧 that were active at the time of visit. We hypoth-
esize these latent codes to encode the subgoal seeking
abstract action towards the corresponding object.

3. Finally, we use those latent codes in different scenarios,
and demonstrate that the same latent code’s subgoal
seeking property generalizes to other situations.

Generalization to new configurations and switching
timing Here, we investigate the ability of the latent code
to generalize to new grid configurations and unseen switch-
ing times. The metacontroller is trained on successful,
nearly-optimal trajectories where agents rarely demon-
strate "backtracking" – behavior where an agent turns
away from one object to seek another. Consequently, it
is non-trivial whether a latent code injected mid-rollout
can override the base model’s current trajectory. As shown
in Fig. A4, injecting a “go to blue” latent code at timestep
30 causes the agent to immediately correct its course, even
if it was previously moving toward a different object. This
intervention increases the goal-reaching success rate from
23% in the uncontrolled baseline to 36%. This is signif-
icant, considering that the latent codes were generated
for different configurations and are the result of a noisy
sampling.

Generalization to out of distribution sequences We
further test whether these codes can force behavior that
is explicitly absent from the training data. In the ant-
pinpad environment, the agent is never trained to seek
object 1 immediately after object 0 (c.f. Section A). By
manually activating the latent code for object 1 after the
agent reaches object 0, we find the success rate for this OOD
transition rises from 10% (baseline) to 24%. Note that this
also tests whether the same latent codes can generalize to
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a new position in the sequence, since they were collected
from trajectories where the ant visited the corresponding
object as the first object.

Ultimately, these results indicate that the metacontroller
does not merely learn to segment time, but successfully
discovers a compact, steering-capable representation of
functional intent—providing the necessary ’options’ for in-
ternal RL to perform efficient credit assignment in complex,
hierarchical tasks.

B.4. Internal reinforcement learning
We complement the main text Fig. 8 by showing the same
plot in log scale in Fig. A5. First, we notice that our inter-
nal RL methods achieves the highest success rate at the
beginning of training, indicating that noise injection in
the residual stream is useful for exploration, compared
to exploration done by sampling raw actions alone. At
the same time, despite their high initial success rate, the
baselines completely fail at exploiting the experience to
reinforce their success. This indicates that proper temporal
abstraction is beneficial not only for exploration, but also
exploitation as well.

C. Experimental details
Here, we describe the details of training the sequence
models (cf. Appendix D.1) as well as several variations of
the controller (cf. Appendix D.2) acting on the then fixed
sequence models to produce the results demonstrated in
this paper. Moreover, in the final subsection we report the
hyperparameters for each experiment.

C.1. Pretraining of sequence models
As a prerequisite for the main experiments that all involve
tampering with the activations of a pretrained model, the
base sequence models 𝑓𝜃 are first trained to autoregres-
sively predict next actions 𝑎𝑡 and next observations 𝑜𝑡+1
given a sequence of observations 𝑜1:𝑡, on a set of meaning-
ful expert trajectories. The details of the expert trajectory
generation and sequence model training are given in the
following.

C.1.1. Expert trajectory generation
Given an environment and a set of pretraining tasks, expert
trajectories are a set of corresponding successful trajecto-
ries. The trajectories are not necessarily optimal.
For the gridworld-pinpad environment, we analytically

solve (via dynamic programming) for the stochastic pol-
icy that solves the shortest path problem, and, at every
timestep, replace the action by a random (non terminating)
action with probability 𝜖. For all results unless explicitly
specified, we chose 𝜖 = 0, but show the robustness against
such noise in Section B.2.
For the ant-pinpad environment, we obtain the expert

trajectories by training an RL agent. In order to train a
single agent for the different task, we augment the obser-
vation in the following way: for each cell of the grid, the
agent is given an additional 4-dimensional 1-hot vector,
indicating one of the 4 cardinal directions the agent must
move towards to follow the shortest path at the grid-level.
Furthermore, an additional intrinsic reward corresponding
to the dot product between the agent’s velocity and this

direction is given. The agent is trained by PPO [66], see
Table A3 for the hyperparameters used.

Note that the resulting expert trajectories are not always
successful. The success rate for the pretraining tasks is at
0.8, and for the post-training tasks at 0.7. The success rate
in Figure 8 is normalized by this score.

Hyperparameter Search

Embedding dimension 𝑛𝑒 256
Backbone model SSM
Backbone model depth 6
Train steps 256000
Batch size 1024
Optimizer AdamW

Learning rate [3e-4]
Weight decay [0.03]
Entropy reg [0.0003]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A3 | Hyperparameters for expert training on the ant-
pinpad environment.

C.1.2. Sequence model training
Given a dataset 𝐷 of expert trajectories, the sequence mod-
els are trained to maximize the log-likelihood of the data

max
𝜃

log
∏

(𝑜1:𝑇+1,𝑎1:𝑇 )∼𝐷

𝑇∏
𝑡=1

𝑝𝜃(𝑎𝑡 |𝑜1:𝑡)𝑝𝜃(𝑜𝑡+1 |𝑜1:𝑡)

=max
𝜃

∑︁
(𝑜1:𝑇+1,𝑎1:𝑇 )∼𝐷

𝑇∑︁
𝑡=1

log 𝑝𝜃(𝑎𝑡 |𝑜1:𝑡) + log 𝑝𝜃(𝑜𝑡+1 |𝑜1:𝑡).

(4)
Switching the sign and reweighting the observation compo-
nent with a coefficient 𝜆 yields the loss function presented
in the main text, repeated below for convenience:

min
𝜃

𝐿(𝜃) =min
𝜃

∑︁
(𝑜1:𝑇+1,𝑎1:𝑇 )∼𝐷

𝑇∑︁
𝑡=1
− log 𝑝𝜃(𝑎𝑡 |𝑜1:𝑡)

− 𝜆 log 𝑝𝜃(𝑜𝑡+1 |𝑜1:𝑡).
(5)

Table A4 summarizes the hyperparameter choices for
training sequence models on the discrete gridworld and
Table A5 those for the ant. For the sequence models, we
use the hyperparameters specified in Table A15 for SSMs
and those specified in Table A16 for transformers. We use
SSMs for the ant-pinpad and transformers in the gridworld-
pinpad.

C.1.3. Seed
For both environments, we pretrain 10 such sequence mod-
els with different seeds.

C.2. Belief state probing
Given a pretrained sequence model 𝑓𝜃 optimized to maxi-
mize Equation 5, we train linear probes to predict the latent
subgoals governing a sequence at hand. More formally,
given a sensori-action sequence (𝑜1:𝑇+1, 𝑎1:𝑇 ) we train a
linear probe 𝑈𝑙 ∈ ℝ𝑛𝑒,𝑛𝑔 to predict the latent subgoal 𝑔𝑡
from the residual activation 𝑒𝑡,𝑙 at layer 𝑙 ∈ 0, ..., 𝐿 at every
timestep 𝑡. Here, 𝑛𝑒 and 𝑛𝑔 denote the residual stream
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Figure A4 | Controller latent codes implement abstract actions. Here, we illustrate the effect of a latent controller code
implementing the abstract action “go to blue” in ant-pinpad, when forcing a switch at an arbitrary time. The three pairs display a
trajectory without intervention by the metacontroller (left) vs. the one with the metacontroller running on a latent code corresponding
to “go to blue” (right) respectively. The same controller latent code successfully steers the ant towards the desired color in different
context, and regardless of the timing at which it is activated. Some trajectories demonstrate backtracking behavior when the control
is applied.

ba

Figure A5 | Internal reinforcement learning solves sparse-
reward compositional tasks where standard methods fail.
While some baselines see non-zero success rates at some time
during RL training they fail to translate these successes into
a policy maximizing reward. In turn, internal RL manages to
successfully optimize the reward throughout training.

dimension and total number of subgoals in the dataset
respectively and 𝐿 is the number of layers of 𝑓𝜃. The belief
distribution over the subgoals at timestep 𝑡 is parameter-
ized as

𝑝(𝑔𝑡 = 𝑔 |𝑒𝑡) = softmax(𝑈𝑙𝑒𝑡,𝑙)𝑔 . (6)

The parameters 𝑈𝑙 are trained to minimize the cross-
entropy loss

𝐿(𝑈𝑙) =
∑︁

(𝑜1:𝑇+1,𝑔1:𝑇 )∼𝐷

𝑇∑︁
𝑡=1
− log 𝑝(𝑔𝑡 |𝑒1:𝑡,𝑙) (7)

Table A6 summarizes the hyperparameter choices for these
experiments.

C.3. Controller compositional generalization
Given a pretrained and subsequently fixed sequence model
𝑓𝜃, a modification of the metacontroller 𝑐𝜙 as defined in Ap-
pendix D.2 is inserted into the base autoregressive model
at some layer 𝑙 ∈ 0, ..., 𝐿. Here, 𝐿 is the total number of lay-
ers of the base autoregressive model. The metacontroller
used in these experiments deviates from the vanilla version

Hyperparameter Search

Embedding dimension 𝑛𝑒 256
Backbone model Transformer
Backbone model depth 6
Observation coefficient 𝜆 [0, 0.01]
Train steps 256000
Batch size 1024
Optimizer AdamW

Learning rate [3e-4]
Weight decay [0.03]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A4 | Hyperparameters for sequence model training on
the gridworld environment.

Hyperparameter Search

Embedding dimension 𝑛𝑒 256
Backbone model SSM
Backbone model depth 8
Observation coefficient 𝜆 10
Train steps 204800
Batch size 512
Optimizer AdamW

Learning rate 3e-4
Weight decay 0.03
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A5 | Hyperparameters for sequence model training on
the ant-pinpad environment.

in how the latent codes 𝑧𝑡 are computed. Instead of sam-
pling 𝑧̃𝑡 from a normal distribution and then temporally
integrating according to

𝑧𝑡 = 𝛽𝑡 ⊙ 𝑧̃𝑡 + (1 − 𝛽𝑡) ⊙ 𝑧𝑡−1

𝛽𝑡 = 1 is forced for all 𝑡. Moreover, in these experiments,
the ground truth information about abstract behaviour
is injected via 𝑧̃𝑡. In particular, the expert trajectories
(𝑜1:𝑇+1, 𝑎1:𝑇 ) are annotated with the IDs of the abstract ac-
tions that governed the behavior during generation. Note
that, contrary to the raw action 𝑎𝑡, the abstract action and
hence the identifier ID𝑡 provided to the metacontroller only
change sparsely in time. Formally, given the ground truth
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Hyperparameter Search

Embedding dimension 𝑛𝑒 256
Backbone train steps [16K, 32K, 64K, 128K, 256K]
Probe layers [0, 1, 2, 3, 4, 5, 6]
Train steps probe 8000
Batch size 512
Optimizer AdamW

Learning rate [1e-3]
Weight decay [0.0]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A6 | Hyperparameters for belief state probing in grid-
world.

labels, the controller latent code at time step 𝑡 is given by

𝑧𝑡 = 𝑧̃𝑡 = onehot(IDt, 𝐾),

the onehot encoding of ID𝑡. Here, 𝐾 denotes the total num-
ber of unique abstract actions in the datasetD. With access
to this additional privileged information, we train the pa-
rameters 𝜙 to further maximize the data log-likelihood (cf.
Equation 5).
Table A7 summarizes the hyperparameter choices for

the controller compositional generalization on the discrete
gridworld and Table A8 those for the ant.

Hyperparameter Search

Observation coefficient 𝜆 0
Controller model Low-rank (16) linear
Controlled layer 𝑙 𝐿

2
Train steps 3200
Batch size 512
Optimizer AdamW

Learning rate [1e-3]
Weight decay [0.03]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A7 | Hyperparameters for the controller compositional
generalization experiment on the gridworld environment.

Hyperparameter Search

Observation coefficient 𝜆 0
Controller model Linear
Controlled layer 𝑙 𝐿

2
Train steps 3200
Batch size 256
Optimizer AdamW

Learning rate [3e-4]
Weight decay [0.03]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A8 | Hyperparameters for the controller compositional
generalization experiment on the ant-pinpad environment.

C.4. Unsupervised abstract action discovery
Given a pretrained, frozen base sequence model 𝑓𝜃, the
metacontroller 𝑐𝜙 as described in Appendix D.2 is inserted
into the base model at some layer 𝑙 ∈ 0, ..., 𝐿 where 𝐿 is the

base model depth. With 𝜃 frozen, the metacontroller pa-
rameters 𝜙 are trained to (further) minimize a regularized
NLL. Note that the metacontroller 𝑐𝜙 learns to generate
and make use of an acausal embedding 𝑠(𝑒1:𝑇 ). Thus, by
controlling the base model, the metacontroller can mini-
mize the NLL beyond the loss-level attained by the causal
base autoregressive model. Beyond optimizing Equation 5,
the posterior over controller latent codes

𝑧̃𝑡 ∼ N(𝑧enc; 𝜇𝑡, Σ𝑡)
is regularized so that at test time meaningful controller
latent codes can be sampled from the prior N(0, 𝐼). To
allow this, the Kullback-Leibler divergence between both
distributions

𝐷KL
(
N(𝜇𝑡, Σ𝑡) ∥ N (0, 𝐼)

) (8)
is added to the NLL objective. Putting everything together,
and adding regularization strength 𝛼 the metacontroller
𝑐𝜙 is trained to minimize the loss

𝐿(𝜙) =
∑︁

(𝑜1:𝑇+1,𝑎1:𝑇 )∼𝐷

𝑇∑︁
𝑡=1
− log 𝑝𝜙,𝜃(𝑎𝑡 |𝑜1:𝑡)

− 𝜆 log 𝑝𝜙,𝜃(𝑜𝑡+1 |𝑜1:𝑡)
+ 𝛼𝐷KL

(
N(𝜇𝑡, Σ𝑡) ∥ N (0, 𝐼)

) (9)

where 𝑝𝜙,𝜃 denotes the probability computed by the se-
quence model 𝑓𝜃 when controlled by 𝑐𝜙. This objective
is motivated as the evidence lower bound (ELBO) in Sec-
tion E.1. Again, note that only the parameters 𝜙 are trained
while the sequence model 𝜃 remains frozen.

The hyperparameters for training the metacontroller in
gridworld- and ant-pinpad are summarized in Table A9
and Table A10, respectively.

Hyperparameter Search

Observation coefficient 𝜆 0
KL strength 𝛼 [0,0.05,0.1,0.17,0.3,0.5,1]
Controller model Low-rank (16) linear
Controlled layer 𝑙 𝐿

2
Latent code dimension 𝑛𝑧 8
Controller Encoder hidden layer 64
Controller Decoder hidden layer 32
GRU dimension 𝑛ℎ 32
Sequence embedding dimension 𝑛𝑠 32
Train steps 64000
Batch size 512
Optimizer AdamW

Learning rate [1e-3]
Weight decay [0.03]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A9 | Hyperparameters for unsupervised abstract action
discovery on the gridworld environment.

C.4.1. Baseline – forced resets
This baseline aims to answer the question whether a meta-
controller not factorizing the controller latent code 𝑧𝑡 into
explicit subsequences via 𝛽𝑡 discovers abstract actions suit-
able for subsequent internal RL. To do so, we perform the
exact same experiment as described so far in this subsec-
tion with the only difference that 𝛽𝑡 = 1 is forced at every
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Hyperparameter Search

Observation coefficient 𝜆 0
KL strength 𝛼 [0,0.05,0.1,0.17,0.3,0.5,1]
Controller model Linear
Controlled layer 𝑙 𝐿

2
Latent code dimension 𝑛𝑧 8
Controller Encoder hidden layer 64
Controller Decoder hidden layer 32
GRU dimension 𝑛ℎ 32
Sequence embedding dimension 𝑛𝑠 32
Train steps 32000
Batch size 128
Optimizer AdamW

Learning rate [3e-4]
Weight decay [0.03]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A10 | Hyperparameters for unsupervised abstract action
discovery on the ant-pinpad environment.

timestep. Hence, 𝑧𝑡 is equal to the latent controller code
proposal 𝑧̃𝑡.

C.4.2. Baseline – metacontroller cotraining
This baseline investigates whether the two stage approach
of first training the sequence model 𝑓𝜃, freezing it, and only
then training the metacontroller 𝑐𝜙 yields different results
than cotraining both 𝜃 and 𝜙. In this pursuit, we perform
2 experiments: for gridworld, no pretrained 𝜃 is assumed
and instead both 𝜃 and 𝜙 are both randomly initialized
and jointly trained to optimize the regularized NLL defined
in Equation 3 (else used for training 𝜙 in a frozen 𝑓𝜃). For
ant-pinpad, 𝜃 is initialized to the pretrained parameter, but
we still jointly train 𝜙 and 𝜃 to optimize the objective.

C.4.3. Baseline – CompILE
We adapted CompILE [17, 18] as best as possible to our
setting.

On a high level, CompILE is very similar to our cotrain-
ing baselines: it is a latent variable model (albeit with a
different set of latent variables) which takes a sequence of
observations and output, for each timestep, a continuous
latent variable 𝑧 drawn from a Gaussian that then condi-
tion a policy trained to imitate the action in the trajectory.
Similarly to us, it is a variational inference approach to
discovering the abstract actions, except that it does not
leverage the internal representation of a pretrained model.
CompILE also infers the switching latent variables 𝛽, and
requires a prior distribution over the switching rate and
the maximum number 𝑀 of abstract actions (or segments)
in all sequences.
To make things comparable, we adopt CompILE to our

architecture by drop-in replacing the metacontroller by
the CompILE module which generates the latent code 𝑧,
while keeping everything else identical. In particular, the
same sequence model architecture is used and internally
controlled by 𝑧. Nevertheless, to remain close to the origi-
nal architecture of CompILE, the module generating the
latent code takes as input the raw input, instead of the
residual stream activation. To compensate for the poten-
tial loss in expressivity, we use as the recurrent encoder of
the module the same architecture as the first half of the

sequence model. The parameters for the distribution of the
latent variables are then generated by a one hidden layer
MLPs with hidden dimension 𝑛ℎ. Due to the difficulty of
performing parallel inference when using the algorithm,
the sequence model parameters 𝜃 are initialized to the
pretraining value, such that training can be shortened.

Table A11 (resp. A12) shows the hyperparameter used
for gridworld (resp. ant-pinpad).

Hyperparameter Search

MLP hidden dim 𝑛ℎ 32
Observation coefficient 𝜆 0
KL strength for latent 𝑧 𝛼𝑧 [0.003,0.01,0.03,0.1,0.3,1]
KL strength for latent 𝛽 𝛼𝛽 [0.003,0.01,0.03,0.1,0.3,1]
Gumbel softmax temperature for 𝛽 [0.5, 1]
Maximum number of segments 𝑀 4
Prior switching rate 10
Controller model Low-rank (16) linear
Controlled layer 𝑙 𝐿

2
Latent code dimension 𝑛𝑧 8
Train steps 32000
Batch size 512
Optimizer AdamW

Learning rate [1e-3]
Weight decay [0.03]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A11 | Hyperparameters for CompILE training on the
gridworld environment.

Hyperparameter Search

MLP hidden dim 𝑛ℎ 32
Observation coefficient 𝜆 0
KL strength for latent 𝑧 𝛼𝑧 [0.003,0.01,0.03,0.1,0.3,1]
KL strength for latent 𝛽 𝛼𝛽 [0.003,0.01,0.03,0.1,0.3,1]
Gumbel softmax temperature for 𝛽 [0.5, 1]
Maximum number of segments 𝑀 4
Prior switching rate 10
Controller model Linear
Controlled layer 𝑙 𝐿

2
Latent code dimension 𝑛𝑧 8
Train steps 32000
Batch size 128
Optimizer AdamW

Learning rate [3e-4]
Weight decay [0.03]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A12 | Hyperparameters for CompILE training on the
ant-pinpad environment.

C.4.4. Metacontroller training dataset
While our experiments reveal that the emergence of ab-
stract actions in the sequencemodel is robust to suboptimal-
ity (c.f. Appendix B.2) the opposite holds for discovering
these abstract actions in the frozen sequence model with
the metacontroller. Empirically, we observe that as the
demonstrations used for training the metacontroller get
cleaner (i.e. the closer they resemble the optimal stochastic
policy), the ability of the metacontroller to compress the
abstract actions onto a latent space improves. Therefore,
for training the metacontroller, for ant-pinpad, we generate
trajectories by taking the mean of the Gaussian distribution
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generated by the expert for each timestep instead of sam-
pling from it. Similarly, for grid we set the suboptimality
degree 𝜖 = 0, to obtain clean expert demonstration.

C.4.5. Seed
For all environments and methods, for each of the 10 pre-
trained sequence models and each of the hyperparameter
configurations, we perform this unsupervised abstract ac-
tion discovery over 3 different seeds.

C.5. RL experiments
C.5.1. Internal RL
We present in algorithm 2 the initialization function for the
internal RL environment, and 1 the effective internal RL
environment step function, given the original environment,
a pretrained base autoregressive model and corresponding
meta controller. Algorithm 3 shows the full training loop.

The hyperparameters for training the agent in gridworld-
and ant-pinpad are summarized in Table A13 and Ta-
ble A14, respectively.

Hyperparameter Search

Policy model SSM
Policy depth 1
Policy Embedding dimension 256
Train steps 100000
Batch size 1024
Entropy regularizer 0
Optimizer AdamW

Learning rate [3e-5]
Weight decay [0.0]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A13 | Hyperparameters for internal RL on the gridworld
environment.

Hyper Parameter Search

Policy model SSM
Policy depth 1
Policy Embedding dimension 256
Train steps 51200
Batch size 256
Entropy regularizer 0
Optimizer AdamW

Learning rate [3e-5]
Weight decay [0.0]
𝛽s (0.9, 0.999)

Scheduler
Constant learning rate

Table A14 | Hyperparameters for internal RL on the ant-
pinpad environment.

C.5.2. RL algorithm details
For all RL experiments, we used an RL algorithm suitable
for sparse, single final reward setting. The algorithm is
related to the GRPO algorithm, except for the notion of
group which is absent in our setting. Similarly to GRPO, we
modify the standard Proximal Policy Optimization [PPO;
66] framework by replacing the learned value function
(critic) with an empirical advantage estimation.

Algorithm 1: The effective internal RL environment
step function
require :Original environment 𝐸, switching unit

𝑓switch, controller decoder 𝑓hyp, model
blocks 𝑓block:𝑙 up to layer 𝑙, model blocks
𝑓block𝑙: from layer 𝑙. The function takes the
abstract action 𝑧, and the internal state 𝑠
as inputs.

step (𝑧, 𝑠):
𝛽 ← 0
done← False
𝑟acc ← 0
(𝑒, ℎswitch, ℎblock𝑙: , ℎblock:𝑙 ) ← 𝑠

while 𝛽 < 𝛽threshold do
𝑈 ← 𝑓hyp (𝑧)
𝑎, ℎblock𝑙: ∼ 𝑓block𝑙: (𝑒 + 𝑈𝑒, ℎblock𝑙: )
𝑜, 𝑟, done ∼ 𝐸.step(𝑎)
𝑒, ℎblock:𝑙 ← 𝑓block:𝑙 (𝑜, ℎblock:𝑙 )
𝛽, ℎswitch ← 𝑓switch (𝑒, 𝑧, ℎswitch)
𝑟acc ← 𝑟acc + 𝑟

𝑠← (𝑒, ℎswitch, ℎblock𝑙: , ℎblock:𝑙 )
return (𝑒, 𝑟acc, done), 𝑠

Algorithm 2: The internal RL initialization function
require :Original environment 𝐸, switching unit

𝑓switch, controller decoder 𝑓hyp, model
blocks 𝑓block:𝑙 up to layer 𝑙, model blocks
𝑓block𝑙: from layer 𝑙.

init ():
𝑜, 𝑟, done ∼ 𝐸.init()
ℎblock𝑙: ← 𝑓block𝑙: .init()
ℎblock:𝑙 ← 𝑓block:𝑙 .init()
ℎswitch ← 𝑓switch.init()
𝑒, ℎblock:𝑙 ← 𝑓block:𝑙 (𝑜, ℎblock:𝑙 )
𝛽, ℎswitch ← 𝑓switch (𝑒, 𝑧, ℎswitch)
𝑠← (𝑒, ℎswitch, ℎblock𝑙: , ℎblock:𝑙 )
return (𝑒, 𝑟, done), 𝑠

Algorithm 3: The internal RL full algorithm
require :Policy 𝜋𝜃
for epoch 𝑒 = 1 . . . 𝐸 do
B ← []
for batch element 𝑏 = 1 . . . 𝐵 do
(𝑒, 𝑟, 𝑑𝑜𝑛𝑒), 𝑠← init()
ℎ𝜋 ← 𝜋𝜃.init()
𝜏← []
while not done do

# acting on a temporally abstract
timescale (see algorithm 1)
𝑧, ℎ𝜋 ∼ 𝜋𝜃(𝑒, ℎ𝜋)
𝜏.append((𝑒, 𝑟, 𝑑𝑜𝑛𝑒, 𝑧))
(𝑒, 𝑟, 𝑑𝑜𝑛𝑒), 𝑠← step(𝑧, 𝑠)

𝜏.append((𝑒, 𝑟, 𝑑𝑜𝑛𝑒, 𝑁𝑜𝑛𝑒))
B.append(𝜏)

Update policy 𝜋𝜃 using B by maximizing the
objective in Eq 10

Output 𝜋𝜃
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Objective function. We optimize the policy by maximiz-
ing a clipped surrogate objective similar to PPO. The loss
is defined as:

𝔼𝜏

[∑︁
𝑡

min( 𝜋𝜃(𝑎𝑡 |𝑠1:𝑡)
𝜋𝜃old (𝑎𝑡 |𝑠1:𝑡)

, clip( 𝜋𝜃(𝑎𝑡 |𝑠1:𝑡)
𝜋𝜃old (𝑎𝑡 |𝑠1:𝑡)

, 1 − 𝜖, 1 + 𝜖))A𝜏

]
(10)

where 𝜋𝜃 is the current policy and 𝜋𝜃old is the previous
policy, A𝑡 is the relative advantage of the trajectory 𝜏.

Relative advantage estimation. We adopt the critic-free
approach to estimating the advantage.
The relative advantage A𝜏 measures how much better

(or worse) a specific trajectory 𝜏 is compared to the average
quality of the entire batch of size 𝐵. It is calculated by
normalizing the reward 𝑅(𝜏) relative to the batch’s mean
𝑅 and standard deviation 𝜎𝑅:

𝑅 =
1
𝐵

𝐵∑︁
𝑖=1

𝑅(𝜏𝑖)

𝜎𝑅 =

√√√
1
𝐵

𝐵∑︁
𝑖=1
(𝑅(𝜏𝑖) − 𝑅)2

A𝜏 =
𝑅(𝜏) − 𝑅
𝜎𝑅 + 𝛿

,

where 𝛿 is a small constant (e.g., 10−3) to ensure numerical
stability and prevent division by zero.

C.5.3. Baseline – raw action RL
For the raw action RL baseline, we simply use the pre-
trained sequence model without any metacontroller, and
finetune it on the post-training task using the RL algorithms
described in section C.5.2, in raw action space. Since for
the raw action RL baseline, there is no unsupervised ab-
stract action discovery phase, we instead do the RL over 3
seeds.

C.5.4. Baseline – others
For all other baselines, we simply perform internal RL
with the respective metacontrollers obtained during the
unsupervised abstract action discovery, cf section C.4.

C.5.5. Seed and Hyperparameter selection
For each method, we scan over different learning rates
(0.000003, 0.00001, 0.00003, 0.0001, 0.0003) and pick
the learning rate and hyperparameter configuration from
the unsupervised abstract action discovery with the best
median RL performance over the 10 pretrained model and
3 seed.

C.6. Rate-distortion curve
The rate distortion curve is plotted after performing the un-
supervised abstract action discovery with the same hyper-
parameters as described in section C.4, with the exception
of using the Gumbel-Sigmoid trick for the switching units
as derived in E.1 for gridworld-pinpad, as it resulted in a
cleaner Pareto frontier. As the pretrained sequence models
have each different Pareto frontier which would hide its

structure, we pick one sequence model at random, and
instead do the unsupervised abstract action training with
10 seeds on each of the different KL strength 𝛼. We do this
for our method, as well as the metacontroller cotraining
baseline.
The sum of switching value is computed by hard-

thresholding the continuous switching value with
𝛽threshold = 0.5 as we do in the internal RL (cf algorithm
1), and taking the average sum over trajectories. We
manually checked the forget patterns to label whether the
switching patterns aligned with the subgoal change.

D. Architecture details
D.1. Sequence model
We parametrize the base model as an autoregressively-
trained multi-layer sequence model 𝑓𝜃. The specific in-
stantiations of 𝑓𝜃 detailed below utilize either standard
transformer [1] or recurrent neural network (also com-
monly referred to as state-space model, SSM) layers. From
the latter family ([22, 67–73] and others), we choose the
Hawk [22] due to its simplicity and computational effi-
ciency.

D.1.1. SSM
For SSM-based sequence models, we employ a standard
pre-normalization layer architecture. Inputs are normal-
ized before being fed into the recurrent Hawk sequence
mixing block [22], whose output is added back to the resid-
ual stream. This is followed by an MLP channel-mixing
block that similarly applies normalization to its input be-
fore adding its output back to the residual stream.

Hyperparameter Value

Embedding dimension 𝑛𝑒 256
Hawk LRU dimension 256
Number of heads 8
Variance scaling of all initializers 0.1
MLP hidden layer dimension 512
MLP nonlinearity ReLU

Table A15 | Hyperparameters for Hawk state space model
layers.

D.1.2. Transformer
For transformer-based models, we employ a standard pre-
normalization layer architecture. We first compute relative
position embeddings to serve as attention biases. Inputs
are then normalized and fed into the Multi-Head Atten-
tion sequence mixing block (incorporating these biases),
whose output is added back to the residual stream. This
is followed by an MLP channel-mixing block that applies
normalization to its input before adding its output back to
the residual stream.

D.2. Metacontroller architecture
Design principles. The metacontroller is designed to act
inside a frozen, autoregressive sequence model backbone.
It does so by modulating the residual stream activations
at some backbone layer via simple, internal controllers.
Manipulating the residual stream allows the metacontroller
to implement temporally abstract actions that turn the
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Hyperparameter Value

Embedding dimension 𝑛𝑒 256
Attention head dimension 64
Number of heads 4
Variance scaling of all initializers 0.1
MLP hidden layer dimension 512
MLP nonlinearity ReLU
Number of buckets for relative positional encodings 32

Table A16 | Hyperparameters for Transformer model layers.

sequence model into a subgoal-optimizing policy pursuing
a selected goal over multiple raw action timesteps.
These temporally abstract actions implement the sub-

goals governing the behaviour of the agents whose trajecto-
ries constitute the offline data available for metacontroller
training. To discover these abstract actions, the metacon-
troller tracks a recurrent latent variable 𝑧𝑡 capturing the
subgoal active at step 𝑡 and then translates it into an ac-
tion (linear controller). The true posterior 𝑝(𝑧𝑡 |𝑒1:𝑇 ) over
this latent 𝑧𝑡 is inherently acausal since (sub)goals only
materialize over an entire trajectory. To make this tan-
gible consider an agent that is placed in the gridworld
with the intent to “go to red”. As the agent takes its first
goal-directed actions, an outside observer will have a hard
time determining the underlying goal since reaching other
colored cells like green might require taking the very same
first actions. Only as the action sequence further unfolds
and the evidence of the agent’s intent becomes conclusive
the goal can be identified. These considerations underline
that to correctly infer the subgoal at step 𝑡, in general, the
metacontroller needs access to sequence-level information.
They also reveal that the purely causal backbone is limited
to, at best, discover a powerful online inference algorithm
for latent subgoals.

Now, as is the case for real world data, assume that the
offline trajectories include the behavior of agents complet-
ing subgoals and subsequently switching to new subgoals.
It is desirable for the metacontroller to infer the latent 𝑧𝑡
in a way that makes the factorization into subgoals acces-
sible. This boils down to parameterizing 𝑧𝑡 as a temporal
composition of latent codes 𝑧̃𝑡 orchestrated by a switching
unit 𝛽𝑡 ∈ [0, 1]. Selecting 𝛽𝑡 ≈ 1 implements switching
subgoals and, equally important to achieve temporally con-
sistent behaviour, 𝛽𝑡 ≈ 0 allows to maintain the previous
subgoal. While, as discussed above, the 𝑧̃𝑡 needs to be
acausal, 𝛽𝑡 is parameterized to be causal. This allows the
metacontroller to identify when to switch goals at test
time (when no acausal information is available). For more
justification of this choice, see Section E.1.

High-level description. On a high level, the metacon-
troller 𝑐𝜙 (cf. Fig. A6) can be viewed as a recurrent hy-
pernetwork [40]. It acts inside a frozen sequence model
backbone 𝑓𝜃 by emitting internal, linear controllers 𝑈𝑡 alter-
ing the residual activations at timestep 𝑡. Architecturally,
it is an encoder-decoder generative model that allows to
sample controllers that, after training, implement abstract
actions. First, at every timestep the recurrent controller
encoder stochastically proposes controller latent codes 𝑧̃𝑡
conditioned on an acausal embedding 𝑠(𝑒1:𝑇 ) generated
by the internal sequence embedder. Also per timestep, the

switching unit emits a temporal integration rate 𝛽𝑡. Subse-
quently, the temporal integration unit takes per timestep
latent proposals and composes them sparsely in time by
applying the temporal integration rate. The temporally
integrated latent controller codes 𝑧𝑡 are then mapped to
instantaneous controllers by the controller decoder.

Meta-

controller

Controller

encoder

...

Switching 
unit

Model block l+1

Controller 
decoder

Model block l

Temp. 
integration

...

Model block 1

Model block N

Temporal integration

Internal 
controller

Internal sequence 
embedder

Figure A6 | Metacontroller architecture (same as Fig. 5).

Architectural details. Adopting the standard design
principles for sequence models, the pretrained sequence
model 𝑓𝜃 is built from 𝐿 stacked layers (cf. Appendix D.1).
While processing the sequence of inputs 𝑜1:𝑇 to predict
(𝑎1:𝑇 , 𝑜2:𝑇+1) the sequence model generates a sequence of
residual stream activations 𝑒1:𝑇,𝑙 at each layer 𝑙 ∈ {0, ..., 𝐿}
(0 refers to the residual activations immediately before
the first layer). The metacontroller operates inside the
sequence model at layer 𝑙 by reading these residual activa-
tions 𝑒1:𝑇,𝑙 and applying an internal, linear controller

𝑒̂𝑡,𝑙 = 𝑒𝑡,𝑙 + 𝑈𝑡𝑒𝑡,𝑙 . (11)
This controlled residual activation 𝑒𝑡,𝑙 is passed to the subse-
quent model blocks, which are unaware of the intervention.
The following details the metacontroller architecture used
to learn these interventions from offline data.
The metacontroller keeps track of two summarizing

states–a summary state ℎ𝑡 of the history of activations
𝑒1:𝑡,𝑙 and an embedding 𝑠(𝑒1:𝑇,𝑙) summarizing the entire
sequence of activations 𝑒1:𝑇 . The history is generated by a
GRU [41] and compresses information from past residual
activations in its 𝑛ℎ dimensional hidden state

ℎ𝑡 = GRU(𝑒𝑡, ℎ𝑡−1). (12)
This hidden state allows the metacontroller to remember
relevant information about the history at test-time. Be-
yond the history, as discussed above, the metacontroller
needs access to sequence level (acausal) information to
fulfill its overarching purpose to approximate the posterior
𝑞(𝑧𝑡 |𝑒1:𝑇 ). This information is provided through the inter-
nal sequence embedder 𝑓emb. It takes the trajectory of
residual stream activations 𝑒1:𝑇,𝑙 produced at layer 𝑙 and
summarizes it in an internal sequence embedding

𝑠(𝑒1:𝑇,𝑙) = 𝑓emb (𝑒1:𝑇,𝑙) (13)
of dimension 𝑛𝑠. The internal sequence embedder is param-
eterized as a SSM (cf. Appendix D.1.1) with 𝐿𝑒𝑚𝑏 layers.

Conditioned on this sequence embedding the latent pro-
posal mechanism estimates a distribution over controller
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latent codes 𝑧𝑡 and samples it to produce a 𝑛𝑧 dimensional
controller latent code proposal 𝑧̃𝑡 at every timestep 𝑡. The
distribution is set to be a normal

𝑧̃𝑡 ∼ N(𝜇𝑡, Σ𝑡), (14)

where Σ𝑡 is chosen to be diagonal for computational ef-
ficiency. The parameters for mean and variance are pro-
duced by the controller encoder

𝜇𝑡, Σ𝑡 = 𝑓enc
(
𝑒𝑡,𝑙, ℎ𝑡−1, 𝑠

(
𝑒1:𝑇,𝑙

) )
. (15)

Crucially, if this was the final parameterization of the
approximate posterior 𝑝(𝑧𝑡 |𝑒1:𝑇,𝑙) it would not provide a
handle on the factorization of the subgoals the agent com-
posed in time when generating its behaviour. As a first step
to obtain such a factorization, the metacontroller imple-
ments a switching unit producing the temporal integration
rate

𝛽𝑡 = 𝑓switch (𝑒𝑡,𝑙, ℎ𝑡−1, 𝑧𝑡−1) ∈ [0, 1]. (16)
This integration rate is passed to the temporal integra-

tion unitwhich uses it to combine the latent code proposals
𝑧̃𝑡 sparsely in time. In particular, given 𝛽𝑡, 𝑧̂𝑡, and 𝑧𝑡−1, the
updated latent code is given by the convex combination

𝑧𝑡 = 𝛽𝑡 ⊙ 𝑧̃𝑡 + (1 − 𝛽𝑡) ⊙ 𝑧𝑡−1. (17)

Observe, that since the 𝑧̃𝑡 are stochastically generated so is
𝑧𝑡. Moreover, the 𝛽𝑡 which only rely on causal information
and hence can be generated at test time provide a direct
handle on the subgoals. When 𝛽𝑡 ≈ 1 a new subgoal 𝑧̃𝑡
takes over while 𝛽𝑡 ≈ 0 indicates that the previous subgoal
𝑧𝑡−1 remains a valid explanation for the intent of the agent.
This latent controller code 𝑧𝑡 is then sent through the con-
troller decoder. The controller decoder is a hypernetwork
emitting the internal controller

𝑈𝑡 = 𝑓hyp (𝑧𝑡). (18)

As detailed above this linear controller is applied to the
residual stream to control the backbone thereby impacting
the predicted data log-likelihood computed at the output
of the sequence model. Crucially, the described mechanism
allows the meta controller to act on extended timescales
by maintaining the latent code 𝑧𝑘 computed at timestep 𝑘

for some 𝑛 timesteps (by setting 𝛽𝑘+1:𝑘+𝑛−1 = 0). Thereby,
since the computation of the hypernetwork is deterministic,
the same instantaneous controller 𝑈𝑘 can be applied for 𝑛
timesteps and corresponds to a temporally abstract action.

D.3. Internal RL policy architecture
Since the residual activation 𝑒𝑡 for a single layer does not
necessarily contain all information about the raw input
history, we use a recurrent policy. A simple 1-layer SSM as
described in section D.1.1 is used. See Table A13 and A14
for more details on the architecture.

E. Additional discussions
E.1. Graphical model and ELBO derivation
Here, we present the graphical model used to derive our
unsupervised objective. We denote by 𝑒𝑡 the residual stream
activation at time 𝑡, 𝑎𝑡 the action, 𝑧𝑡 the abstract action of

which 𝑎𝑡 is part, and 𝛽𝑡 the random variable indicating a
change in the abstract action, i.e., 𝑧𝑡−1 ≠ 𝑧𝑡 if 𝛽𝑡 = 1. The
assumed generative model is as follows:

𝑝(𝛽1:𝑇 , 𝑧1:𝑇 , 𝑎1:𝑇 | 𝑒1:𝑇 )

=
∏
𝑡

𝑝(𝛽𝑡 | 𝑒1:𝑡)𝑝(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡)𝑝(𝑎𝑡 | 𝑧𝑡, 𝑒1:𝑡)

where 𝑝(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡) = 𝟙𝑧𝑡=𝑧𝑡−1 if 𝛽𝑡 = 0 else N(𝑧𝑡 | 0, 𝐼).
We want to optimize the likelihood of observing the

sequence of actions by maximizing the following evidence
lower bound (ELBO):

log 𝑝(𝑎1:𝑇 | 𝑒1:𝑇 )

≥
∫
𝛽,𝑧

𝑞(𝛽1:𝑇 , 𝑧1:𝑇 | 𝑒1:𝑇 , 𝑎1:𝑇 )
𝑝(𝛽1:𝑇 , 𝑧1:𝑇 , 𝑎1:𝑇 | 𝑒1:𝑇 )
𝑞(𝛽1:𝑇 , 𝑧1:𝑇 | 𝑒1:𝑇 , 𝑎1:𝑇 )

where 𝑞 is the variational distribution. This lower bound
holds for any choice of 𝑞. Following the graphical model, 𝑞
can be factorized as follows:

𝑞(𝛽1:𝑇 , 𝑧1:𝑇 | 𝑒1:𝑇 , 𝑎1:𝑇 )

=
∏
𝑡

𝑞(𝛽𝑡 | 𝑒1:𝑡, 𝑎1:𝑇 )𝑞(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡, 𝑎1:𝑇 )

where 𝑞(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡, 𝑎1:𝑇 ) = 𝟙𝑧𝑡=𝑧𝑡−1 if 𝛽𝑡 = 0 else N(𝑧𝑡 |
𝜇𝑡 (𝑎1:𝑇 ), Σ𝑡 (𝑎1:𝑇 )) where Σ is diagonal.
The ELBO can then be written as

ELBO =
∑︁
𝑡

log 𝑝𝜙 (𝑎𝑡 | 𝑧𝑡, 𝑒1:𝑡)

+ 𝐷KL (𝑞(𝛽𝑡 | 𝑒1:𝑡, 𝑎1:𝑇 ) | |𝑝(𝛽𝑡 | 𝑒1:𝑡))
+ 𝐷KL (𝑞(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡, 𝑎1:𝑇 ) | |𝑝(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡)).

It can be shown that the last term can be further decom-
posed as

𝐷KL (𝑞(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡, 𝑎1:𝑇 ) | |𝑝(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡))

=

{
0 if 𝛽𝑡 = 0
𝐷KL (N (𝑧𝑡 | 𝜇𝑡 (𝑎1:𝑇 ), Σ𝑡 (𝑎1:𝑇 )) | |N (0, 𝐼)) if 𝛽𝑡 = 1.

Continuous relaxation. In order to improve stability
during training, we make a continuous relaxation of the
latent variable 𝛽 sampled. In principle, this can be done
with the Gumbel-Sigmoid trick, but in our experiments we
simply used the probability as the latent variable.

We modify the prior and variational distribution on 𝑧 to
be the continuous relaxation, i.e.,

𝑝(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡) =N(𝑧𝑡 | (1 − 𝛽𝑡)𝑧𝑡−1, 𝛽2𝑡 𝐼)
𝑞(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡, 𝑎1:𝑇 )
=N(𝑧𝑡 | 𝛽𝑡𝜇𝑡 (𝑎1:𝑇 ) + (1 − 𝛽𝑡)𝑧𝑡−1, 𝛽2𝑡 Σ𝑡 (𝑎1:𝑇 )).

This recovers the previous behavior when 𝛽𝑡 equals 0 or 1.
In the continuous case, it can be shown that the KL

divergence is

𝐷KL (𝑞(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡, 𝑎1:𝑇 ) | |𝑝(𝑧𝑡 | 𝑧𝑡−1, 𝛽𝑡))
=𝐷KL (N (𝜇𝑡 (𝑎1:𝑇 ), Σ𝑡 (𝑎1:𝑇 )) | |N ((0, 𝐼)).
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Further assumptions. In our experiments, we further
modify the variational distribution on 𝛽 such that 𝑞(𝛽𝑡 |
𝑒1:𝑡, 𝑎1:𝑇 ) ≈ 𝑞(𝛽𝑡 | 𝑒1:𝑡), i.e., we drop the conditioning on
the future. This is done such that during internal RL, the
switching signal can be emitted causally, and eliminates
the prior matching term for the switching module. This
assumption wasmade in our experiments since we assumed
the residual activation to be highly informative of when
switches should occur, in the environments considered. In
general however, we can relax this assumption by keeping
the future conditioning, but distilling the switches to an
unconditioned module.

E.2. Internal RL vs RL with reparametrization trick
As explained in Section C.5.1, internal RL learns a policy
over the discovered abstract action space of 𝑧 by treating
the rest of the architecture as part of the environment, and
applying reinforcement learning directly to 𝑧, with tem-
poral abstraction. However, there are other ways to use
the discovered abstract actions than the proposed inter-
nal RL. One perhaps more straightforward way to use the
metacontroller, is to treat this policy as a noise-injecting
submodule of the overall architecture which is still trained
by reinforcement learning in raw action space, by back-
propagating through the base autoregressive model, to the
policy using e.g. the reparametrization trick. In this sec-
tion, we analytically contrast these 2 options, discuss their
respective advantages, and motivate why we believe the
internal RL is interesting in general.
To simplify the analyses, we make a few assumptions:

• We remain in the outcome-supervision setting: a single
reward 𝑟𝑇 is provided at the last time step 𝑇.

• The switching happens 𝑀 times, at (𝑡𝑚)1≤𝑚≤𝑀 .

• The abstract action policy has a fixed variance, i.e.,
it outputs 𝑧𝑡 = 𝜇(𝑠𝑡) + 𝜖𝑡 where 𝑠𝑡 is the history of
observations up to 𝑡, 𝜖𝑡 ∼ N(0, 1).

We now contrast the policy gradient update of the abstract
action policy, between the 2 options discussed above.

Raw action space RL. Performing RL in raw action space,
treating the abstract action policy as a model layer, would
result in the following expected policy gradient update:

𝔼

[
𝑟𝑇

𝑇∑︁
𝑡=1
∇𝜙 log𝜋(𝑎𝑡 | 𝑠𝑡, 𝑧𝑡)

]
= 𝔼

[
𝑟𝑇

𝑀∑︁
𝑚=1

𝑡𝑚+1−1∑︁
𝑡=𝑡𝑚

∇𝜙 log𝜋(𝑎𝑡 | 𝑠𝑡, 𝑧𝑡𝑚 )
]

= 𝔼

[
𝑟𝑇

𝑀∑︁
𝑚=1

[ 𝑡𝑚+1−1∑︁
𝑡=𝑡𝑚

∇𝑧𝑡𝑚 log𝜋(𝑎𝑡 | 𝑠𝑡, 𝑧𝑡𝑚 )
]
∇𝜙 (𝜇(𝑠𝑡𝑚 + 𝜖𝑡𝑚 ))

]
= 𝔼

[
𝑟𝑇

𝑀∑︁
𝑚=1

[ 𝑡𝑚+1−1∑︁
𝑡=𝑡𝑚

∇𝑧𝑡𝑚 log𝜋(𝑎𝑡 | 𝑠𝑡, 𝑧𝑡𝑚 )
]
∇𝜙𝜇(𝑠𝑡𝑚 )

]
.

Internal RL. In contrast, internal RL (i.e., RL directly in
𝑧-space) results in the following policy gradient update:

𝔼[𝑟𝑇
𝑀∑︁
𝑚=1
∇𝜙 log 𝑃(𝑧𝑡𝑚 | 𝑠𝑡𝑚 )]

= 𝔼[𝑟𝑇
𝑀∑︁
𝑚=1
∇𝜙
−1
2 (𝑧𝑡𝑚 − 𝜇(𝑠𝑡𝑚 ))

2]

= 𝔼[𝑟𝑇
𝑀∑︁
𝑚=1

𝜖𝑡𝑚∇𝜙𝜇(𝑠𝑡𝑚 )].

Note that since the forward pass is the same for both meth-
ods, the distribution over trajectory and rewards are identi-
cal. Let us then compare the variance of these 2 estimators.
For simplicity, we now further assume 𝑀 = 1. This means
a single 𝑧 is drawn at the beginning of the sequence. The
law of total variance gives

𝕍
[
𝑟𝑇
[∑︁

𝑡

∇𝑧 log𝜋(𝑎𝑡 | 𝑠𝑡, 𝑧0)
]
∇𝜙𝜇(𝑠0)

]
= 𝕍

(
𝔼
[
𝑟𝑇

∑︁
𝑡

∇𝑧 log𝜋(𝑎𝑡 | 𝑠𝑡, 𝑧0) | 𝑧0
]
∇𝜙𝜇(𝑠0)

)
+ 𝔼

(
𝕍
[
𝑟𝑇

∑︁
𝑡

∇𝑧 log𝜋(𝑎𝑡 | 𝑠𝑡, 𝑧0) | 𝑧0
]
∇𝜙𝜇(𝑠0)

)
= 𝕍

(
𝔼
[PGraw (𝑧0)

]
∇𝜙𝜇(𝑠0)

)
+ 𝔼

(
𝕍
[PGraw (𝑧0)

]
∇𝜙𝜇(𝑠0)

)
where PGraw (𝑧) = 𝑟𝑇

∑
𝑡 ∇𝑧 log𝜋(𝑎𝑡 | 𝑠𝑡, 𝑧) is the raw action

space policy gradient Monte Carlo estimator w.r.t. “param-
eter” 𝑧.
Similarly,

𝕍
[
𝑟𝑇𝜖0∇𝜙𝜇(𝑠0)

]
= 𝕍

(
𝔼
[
𝑟𝑇 | 𝜖0

]
𝜖0∇𝜙𝜇(𝑠0)

)
+ 𝔼

(
𝕍
[
𝑟𝑇 | 𝜖0

]
𝜖0∇𝜙𝜇(𝑠0)

)
= 𝕍

(
𝔼
[PGz (𝑧0)

]
∇𝜙𝜇(𝑠0)

)
+ 𝔼

(
𝕍
[PGz (𝑧0)

]
∇𝜙𝜇(𝑠0)

)
where PGz (𝑧) = 𝑟𝑇𝜖0 is the policy gradient Monte Carlo
estimator of a bandit problem.
We see that the 2 expressions differ only in PG(𝑧). The

tradeoffs are evident:
• The expectation of PGraw is more structured than PGz.

In particular, its variance w.r.t. epsilon could even be
0 in the first, whereas it scales with the dimension of
epsilon in the second.

• However, the variance of PGraw scales with the number
of timestep and with the raw action space dimension,
since noise is accumulated at every timestep. On the
other hand, PGz does not scale with anything (it is the
variance of the return, i.e., 𝑂(1)). Therefore, if the
abstract action discovery was successful such that a
compact space of 𝑧 was identified, with long-horizon
abstract actions, the policy gradient estimator’s vari-
ance and corresponding credit assignment can be dra-
matically improved, especially for very long horizon
tasks.
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