


经典与量子之桥：马克西姆·孔塞维奇的形变量子化与雅各布
·巴兰德斯的一般广义随机理论的深度比较研究

摘要

物理学基础理论的核心张力长期存在于决定论的经典力学与概率性的量子力学之

间。这种张力不仅是数学形式上的——从交换代数到非交换算子代数的转变——更
是本体论上的：物理实在究竟是由相空间中的几何轨迹构成，还是由希尔伯特空间

中的抽象波函数定义？本研究报告旨在对两种试图弥合这一鸿沟的现代前沿理论框

架进行详尽的比较分析：一是菲尔兹奖得主马克西姆·孔塞维奇（Maxim
Kontsevich）提出的形变量子化（Deformation Quantization）理论，特别是其著名
的形式定理（Formality Theorem）；二是哈佛大学物理学家雅各布·巴兰德斯
（Jacob Barandes）提出的“一般广义随机”（Generalized Stochastic）或“不可分随
机量子力学”（Indivisible Stochastic Quantum Mechanics）理论。

孔塞维奇的路径代表了数学物理中“代数几何化”的极致，通过在经典泊松流形上引
入非交换的星乘积（Star Product），将量子力学视为经典力学在普朗克常数尺度下
的形式形变，从而在保留经典相空间结构的同时重构了量子可观测量代数。相比之

下，巴兰德斯的路径代表了“概率物理化”的复兴，通过放宽传统随机过程的马尔可
夫性质，引入“不可分性”（Indivisibility）概念，证明了量子力学可以在数学上严格等
价于一类在经典构型空间中展开的广义随机过程，并由此从第一性原理推导出复数

和希尔伯特空间的必要性。

本报告将深入剖析这两种理论的数学构造、物理推论及哲学承诺，揭示当代理论物

理在处理微观现实时，在“结构实在论”（Structural Realism）与“随机实在论”
（Stochastic Realism）之间深刻的辩证关系。

第一章 引言：量子化问题的认识论危机与重构需求
自量子力学诞生以来，物理学家和数学家一直试图理解“量子化”这一过程的本质。
普朗克常数   的引入不仅仅是一个数值的修正，它标志着物理量代数结构的根本
性断裂。经典力学中的可观测量（如位置   和动量  ）是交换的，即  ，而

量子力学要求它们满足非交换关系  。这一转变导致了物理学本体论的

巨大困惑：如果微观世界是量子的，那么经典的宏观世界是如何“涌现”的？或者反
过来，如果量子力学是基础，为什么它需要借用经典力学的哈密顿量和相空间概念

来建立自己的形式体系？

ℏ
q p qp = pq

[q, p] = iℏ



1.1 经典量子化的数学困境

早期的量子化方案，如狄拉克（Dirac）提出的正则量子化，试图寻找一个从经典泊
松括号到量子对易子的同态映射。然而，Groenewold-van Hove定理在1946年证明
了这种完全的映射在数学上是不可能的：不存在一种映射能将所有经典可观测量一

致地转换为量子算子并保持其代数结构不变。这一“无路可通”（No-Go）定理表明，
量子力学不仅仅是经典力学的代数翻译，它需要更深刻的结构变革。

面对这一危机，理论物理学界分化出了多种路径。路径积分（Path Integral）方法
通过对所有可能历史求和来绕过算子排序问题，但其测度定义的严格性一直困扰着

数学家。几何量子化（Geometric Quantization）试图利用极化（Polarization）和
前量子化线丛来严格化这一过程，但往往受限于特定的流形结构。

1.2 当代视角的双重奏

在这一背景下，马克西姆·孔塞维奇和雅各布·巴兰德斯的工作分别代表了两种截然
不同但互为补充的现代尝试。

孔塞维奇的形变量子化（Deformation Quantization, DQ）采取了彻底的代数立场。
它拒绝引入希尔伯特空间作为先验容器，而是坚持物理系统由其可观测量代数完全

定义。量子化被视为经典可观测量代数   的一种“形变”，这种形变由泊松结
构引导，并通过形式幂级数展开连接经典与量子 。这种方法在数学上极度优雅，将
量子化问题转化为李代数上同调问题，并与镜像对称、弦论等高深数学物理领域紧

密相连。   

相对地，雅各布·巴兰德斯的不可分随机量子力学（Indivisible Stochastic Quantum
Mechanics, ISQM）则采取了操作主义和概率论的立场。他追问：如果我们剥离量
子力学中所有“怪异”的公理（如波函数、算子、坍缩），剩下的核心是什么？他的回
答是：剩下的核心是一种特殊的、具有记忆效应的随机过程 。巴兰德斯试图证明，
量子力学的所有特征——干涉、纠缠、非交换性——都可以从经典构型空间上的非
马尔可夫随机演化中自然涌现。   

本报告将详细探讨这两座理论大厦。第二章将聚焦于孔塞维奇的形变理论，解析其

复杂的图论构造和几何意义；第三章将转向巴兰德斯的随机框架，探讨其如何从随

机性中推导出复数结构；第四章将对两者进行多维度的比较；最后在第五章展望其

对未来物理学的启示。
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第二章 几何的代数化：马克西姆·孔塞维奇的形变量子化
形变量子化并不是试图推翻经典力学，而是试图证明量子力学实际上是经典力学在

代数结构上的一种“自然延伸”。这种观点由Bayen, Flato, Fronsdal, Lichnerowicz和
Sternheimer在1970年代奠基 ，并在1997年由孔塞维奇通过其著名的形式定理推向
顶峰。   

2.1 泊松流形与经典力学的代数结构

在经典力学中，系统的状态空间是一个泊松流形（Poisson Manifold） 。最常见

的情况是余切丛  ，但这并不是必需的。流形上的光滑函数代数 
 具有双重结构：

1. 交换结合代数结构：对于逐点乘法  ，满足  。

2. 李代数结构：由泊松括号   定义，满足反对称性、雅可比恒等式以及莱
布尼茨法则  。

孔塞维奇的洞见在于，量子化不应被视为寻找希尔伯特空间算子的过程，而应被视

为代数   的结构变形问题。这种变形必须由一个参数   控制，使得当 
 时，我们平滑地回到经典代数。

2.2 星乘积：非交换几何的种子

形变量子化的核心构建块是星乘积（Star Product,  ）。这是一个定义在形式幂级数
空间   上的双线性映射：

其中   是双微分算子（Bi-differential operators）。

为了使这个新乘法   能够代表量子力学，它必须满足以下公理：

1. 结合性（Associativity）： 。这一要求极强，它对 
 的形式施加了无穷多的非线性约束。

2. 对应原理（Correspondence Principle）：一阶项必须复现经典泊松结构，
即  （在物理约定下通常包含虚数单位  ）。

3. 单位元： 。
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最著名的例子是定义在平坦相空间   上的Moyal乘积 ：   

Moyal乘积完美地捕捉了正则量子化的代数结构。然而，物理世界是弯曲的。对于
任意的、非平坦的泊松流形，是否存在这样的星乘积？在孔塞维奇之前，这对辛流

形（Symplectic Manifolds）已被Fedosov解决，但对一般的泊松流形（其中泊松张
量可能退化）仍是悬案。

2.3 孔塞维奇形式定理（Formality Theorem）的数学构造

孔塞维奇在1997年的论文《泊松流形的形变量子化》中彻底解决了这一问题 。他
不仅仅证明了星乘积的存在性，还构造了一个从经典泊松结构到量子星乘积的显式

映射。   

2.3.1 微分分级李代数（DGLA）与   结构

孔塞维奇通过引入微分分级李代数（DGLA）的语言来表述问题。他考虑了两个核
心DGLA：

1. 多向量场代数  ：其元素是流形上的多向量场，李括号为Schouten-
Nijenhuis括号。这个代数控制着经典泊松结构的变形。零微分  。

2. 多微分算子代数  ：其元素是作用在函数代数上的多微分算子，李括

号为Gerstenhaber括号。这个代数控制着结合代数的变形（即星乘积）。其微
分   为Hochschild上同调的微分。

形式定理陈述：存在一个从   到   的   准同构（Quasi-
isomorphism）。

这意味着，虽然这两个空间在严格的李代数意义上不同构，但在同调群的层面上，

以及在控制形变理论的“同伦”层面上，它们是等价的。具体来说，每一个满足主方
程（Master Equation, 即  ）的泊松双向量  ，都可以通过这个

映射   转换为一个满足结合性方程的星乘积  。
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2.3.2 孔塞维奇图（Kontsevich Graphs）与显式公式

孔塞维奇定理最令人惊叹之处在于给出了   乘积各项系数   的显式构造公式。这
些公式由一系列特定的图——孔塞维奇图——加权求和而成 。   

一个   阶的孔塞维奇图   包含：

两个外部顶点（代表输入函数   和  ），通常置于实轴上。

 个内部顶点（代表泊松张量   的插入），置于复上半平面   内部。

边：每个内部顶点发出两条有向边，可以指向其他内部顶点或外部顶点。

公式形式为：

其中：

 是一个微分算子，其结构由图   的连接方式决定。每条边代表对目标顶
点的函数求偏导数，并与源顶点的泊松张量缩并。

 是一个实数权重，由图对应的构型空间积分定义：

这里的积分是在   个点在双曲上半平面上的构型空间   上进行的，
 是连接两点的测地线角度形式（Angle Form）。

这些权重   并非随意选取，它们实际上是某种拓扑场论（Topological Field
Theory）的相关函数。Cattaneo和Felder后来证明，孔塞维奇公式可以通过二维**
泊松西格玛模型（Poisson Sigma Model）**的路径积分微扰展开直接导出 。在这
个物理图像中，开弦的世界面是一个圆盘，边界条件由函数   和   给出，内部的相
互作用由泊松结构   决定。   

2.4 物理意义：代数实在论与结构主义

孔塞维奇的形变量子化理论对物理学的本体论提出了深刻挑战。在这一框架下：
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1. 相空间作为基础：量子力学不需要抛弃相空间，也不需要引入希尔伯特空间中
那些不可观测的相位冗余。相反，量子系统仍然“居住”在相空间中，只是其几
何结构（坐标代数）变成了非交换的。

2. 量子化的非唯一性与规范等价：形式定理表明，星乘积的构造依赖于准同构 
 的选择，这种选择在同伦意义上是唯一的，但在具体形式上可能有规范自
由度。这暗示了量子理论的物理内容存在于其代数结构的等价类中，而非单一

的算子表示中。

3. 结构实在论：该理论强烈支持结构实在论（Structural Realism）观点 。如果
经典力学和量子力学可以通过连续的形变参数   连接，那么这种连接本身
（即形变映射）比两端的具体实现（经典粒子或量子波函数）更具实在性。它

消解了“经典极限”作为一个物理过程的神秘感，将其转化为代数几何中的平滑
过渡。   

第三章 概率的物理化：雅各布·巴兰德斯的一般广义随机理论
当孔塞维奇在数学的云端重构代数时，雅各布·巴兰德斯（Jacob Barandes）则在
物理的地面上重新审视概率的本质。作为哈佛大学的物理学家，他试图解决量子力

学基础中最顽固的“测量问题”和“范畴问题”，并提出了一种基于不可分随机过程
（Indivisible Stochastic Processes）的全新形式体系。

3.1 随机力学的复兴与超越

历史上，试图将量子力学还原为随机过程的努力（如Nelson的随机力学）屡屡受
挫。Nelson理论成功地推导出了薛定谔方程，但它依赖于一种特定的布朗运动假
设，并且难以处理非定域性和多粒子纠缠，常常被批评为仅仅是“模拟”而非“解释”量
子力学。

巴兰德斯的方法不同。他不是试图用某种特定的随机过程（如布朗运动）来拟合量

子力学，而是提出了一种极其广泛的广义随机系统（Generalized Stochastic
Systems）框架 。他的核心洞见是：教科书中的随机过程理论（基于马尔可夫链或
可分过程）对于描述自然界来说过于狭隘了。   

3.2 广义随机系统与“不可分性”公理

在标准概率论中，随机过程通常被假定为满足 Chapman-Kolmogorov 方程。即，
如果系统从时间   演化到  ，这一过程可以被分解为   和   两个独

U

ℏ

t ​0 t ​2 t ​ →0 t ​1 t ​ →1 t ​2



立步骤的乘积（对所有中间状态求和）。这被称为可分性（Divisibility）。

巴兰德斯指出，量子系统的核心特征恰恰是不可分性（Indivisibility）。   

1. 定义不可分过程：一个随机过程是不可分的，如果其从   到   的转移矩
阵   不能被写作中间时刻转移矩阵的乘积，除非在中间时刻对系统
进行了物理上的干预（如测量）。

2. 记忆效应：这种不可分性意味着系统的演化具有极强的非马尔可夫（Non-
Markovian）特性。系统的未来状态不仅取决于当前状态，还以一种无法简化
为当前状态信息的方式依赖于整个历史路径。这种“记忆”并非存储在某些隐变
量中，而是内嵌在动力学定律本身的结构中。

3.3 随机-量子对应定理（The Stochastic-Quantum Theorem）

巴兰德斯理论的基石是随机-量子定理。该定理建立了一个严格的数学同构：

定理陈述：任何满足特定连续性和可逆性条件的广义随机系统（即在经

典构型空间上的概率演化），都在数学上等价于一个幺正演化的量子系统 
。   

这个定理的证明揭示了量子力学形式体系的起源：

1. 构型空间概率：系统在任何时刻   的状态完全由构型空间（如位置空间）上的
经典概率分布   描述。

2. 单随机演化（Unistochastic Evolution）：为了保证概率守恒（即概率和为
1），演化矩阵   必须是随机矩阵。巴兰德斯进一步证明，对于量子系统，
这些矩阵必须属于单随机矩阵（Unistochastic Matrices）的子类。

一个矩阵   是双随机的（Bistochastic），如果其行列和均为1。

一个矩阵   是单随机的，如果存在一个幺正矩阵  ，使得 
。

3.4 复数、希尔伯特空间与线性性的第一性原理推导

这是巴兰德斯理论中最具革命性的部分：解释为什么量子力学需要复数 。   

传统观点认为复数是量子力学的公理假设。巴兰德斯则通过以下逻辑链条推导出复

数的必要性：
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1. 实数的局限性：如果我们仅使用实数正交矩阵   来构造单随机矩阵（即 
，这被称为正随机矩阵 Orthostochastic），我们发现这些矩阵

构成的集合在乘法下不闭合，且无法覆盖所有物理上合理的概率守恒变换。

2. 复数的必要性：为了参数化通用的、保持概率守恒且可逆的随机变换（即单随
机矩阵），我们必须引入复数幅值（Amplitudes）作为辅助变量。幺正群 

 是能够生成所有单随机变换的最小连续群。

3. 希尔伯特空间的涌现：希尔伯特空间及其上的线性幺正演化，并不是物理实在
的直接描述，而是为了线性化地处理复杂的、非线性的不可分随机演化而引入

的数学计算工具（Mathematical bookkeeping device）。所谓的“波函数叠加
态”，在本体论上并不代表粒子同时处于两个位置，而是代表一种特定的概率
分布状态，这种状态的演化规律需要复数幅值来追踪 。   

这一论证利用了Stinespring扩张定理（Stinespring Dilation Theorem）的思想：任
何复杂的非马尔可夫过程（不可分过程）都可以被视为一个更大系统（环境+系统）
上的马尔可夫过程的投影。希尔伯特空间实际上就是这个“扩张”的数学空间，虽然
它在数学上方便，但在巴兰德斯的看来，物理实在始终停留在底层的构型空间中 
。   

3.5 测量问题与“范畴问题”的消解

巴兰德斯特别强调标准量子力学中的“范畴问题”（Category Problem）。标准理论仅
提供了关于测量结果的算法（工具主义），而没有描述“测量之外的世界在发生什么”
（实在论）。这导致了本体论上的断裂。   

在ISQM框架下：

1. 测量的自然化：测量不再是导致波函数坍缩的神秘过程。相反，测量是系统与
环境相互作用导致随机过程性质发生改变的时刻——从不可分演化转变为可分
演化。当系统与宏观仪器纠缠时，环境的快速退相干效应使得系统的有效动力

学在瞬间满足了马尔可夫性质，从而“重置”了历史依赖性。这在数学上表现为
转移矩阵的对角化或分解 。   

2. 客观的概率：即使没有观测者，系统也始终具有确定的构型（虽然我们不知道
是哪一个）。概率是客观的动力学属性，而非主观的无知。这使得理论能够描

述宇宙早期的演化等无观测者情境。

第四章 理论对撞：从数学同构到本体论分歧
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孔塞维奇和巴兰德斯虽然都在处理量子化问题，但他们的方向几乎是相反的：孔塞

维奇是自上而下的（从经典几何通过代数形变到量子），巴兰德斯是自下而上的

（从底层概率动力学涌现出量子形式）。

4.1 核心维度的深度对比

为了清晰展示两种理论的异同，我们构建以下多维度对比分析表：

比较维度 马克西姆·孔塞维奇 (形变量
子化 DQ)

雅各布·巴兰德斯 (不可分随
机 ISQM)

数学基底 李代数上同调 & 图论 (形式幂
级数)

随机过程 & 矩阵分析 (实数
概率分布)

核心操作 代数变形：将普通乘积   变
为非交换星乘积 

概率演化：推广随机矩阵至

单随机映射 

物理实在

(Ontology)
结构实在论：实在在于代数

关系，点和轨迹是次要的或

不存在的。

随机实在论：实在在于构型

空间中的点和轨迹，波函数

是工具。

相空间的角色 保留作为底流形，但其上的

几何（坐标）变为非交换。

保留作为样本空间，粒子在

其中由经典概率分布描述。

 的意义 形变参数：控制代数非交换

程度的形式变量。

扩散尺度：控制随机过程不

可分程度或噪声强度的物理

参数。

复数的来源 预设：代数通常定义在 
 上，源于几何量子

化需求。

推导：源于用线性算子参数

化一般概率守恒映射的数学

需求。

时间与动力学 海森堡绘景：可观测量随时

间演化  。

薛定谔绘景：概率分布随时

间演化  。

测量问题 规避：关注代数结构的一致

性，较少涉及单次测量的坍

缩机制。

核心：通过“不可分   可
分”动力学转变解释测量和
坍缩。

经典极限 数学极限：  时星乘
积平滑退化为泊松括号。

物理极限：退相干导致不可

分过程退化为经典马尔可夫

过程。
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4.2 经典极限的双重面孔：形变参数 vs. 动力学退相干

在处理“经典世界如何从量子世界中涌现”这一问题上，两者提供了截然不同的机
制。

孔塞维奇的路径是数学连续性的路径。在他看来，经典力学是量子力学在 
 处的泰勒展开首项。这是一种“平滑”的过渡，暗示经典和量子物理共享同一个通过
形变相连的数学空间。这种观点在处理半经典近似（WKB近似）时非常强大，因为
它允许我们将量子修正逐级视为经典背景上的微扰 。   

巴兰德斯的路径是物理突变的路径。他认为经典极限不是简单的参数趋零，而是动

力学性质的质变。在微观尺度，随机过程是高度不可分的（量子行为）；在宏观尺

度，由于环境的持续监测（退相干），过程被迫变得可分（经典马尔可夫行为）。这

意味着经典力学是量子随机过程在强退相干环境下的“有效理论” 。这种观点更符合
现代量子开放系统的研究成果（如Zurek的量子达尔文主义）。   

4.3 空间与时间的本质：非交换流形 vs. 非马尔可夫记忆

空间观：孔塞维奇的理论指向了非交换几何。在星乘积下，坐标函数不再对易，这

意味着时空在微观尺度上可能不再是连续的点集，而是某种“模糊”的量子泡沫。这
种观念直接启发了非交换场论和弦论的研究。

时间观：巴兰德斯的理论指向了非马尔可夫时间。他认为量子效应的本质在于时间

上的非定域性（记忆）。粒子似乎“知道”它过去走过的路径（如路径积分所示），这
在ISQM中被解释为动力学的内禀属性。这是一种激进的时间观：当前的物理状态
可能无法完全包含预测未来所需的所有信息，除非我们考虑整个历史 。   

4.4 实在的基底：可观测量 vs. 构型轨迹

这是两者在哲学上最尖锐的冲突。

孔塞维奇代表了代数帝国主义：物理对象（粒子、场）只是代数表示的“影子”。这
种观点与海森堡最初的矩阵力学一脉相承，认为只有可观测量及其关系是真实的。

巴兰德斯代表了轨迹复辟主义：他试图挽救玻姆（Bohm）式的直觉，即粒子确实
有位置，确实有轨迹。但他不需要玻姆力学中那个奇怪的非定域“量子势”。相反，

ℏ→ 0



他用随机性和不可分性替换了导波。这是一种随机隐变量理论，试图说明“上帝确实
在掷骰子，但骰子本身和桌子是真实存在的” 。   

第五章 综合分析：迈向统一的物理图景
尽管孔塞维奇和巴兰德斯的理论看起来处于数学物理光谱的两端，但深入的分析揭

示了它们之间潜在的深刻联系。

5.1 维格纳函数（Wigner Function）作为理论桥梁

连接这两座孤岛的桥梁是维格纳函数。

在形变量子化中，星乘积最初就是为了研究相空间上的维格纳分布演化

（Moyal方程）而引入的。维格纳函数   是量子态在相空间上的准概率
分布，它可以取负值 。   

在随机量子力学中，巴兰德斯虽然从构型空间的经典概率   出发，但他必
须处理“单随机”约束带来的干涉项。这种干涉项在相空间表示中，往往对应于
维格纳函数的负值区域或震荡行为。

我们可以推测，巴兰德斯的不可分随机过程在相空间上的投影，极有可能遵循孔塞

维奇定义的星乘积演化律。具体的数学猜想是：巴兰德斯定义的单随机转移矩阵的

生成元，在Wigner-Weyl变换下，恰好对应于孔塞维奇星乘积换位子   的作
用。

5.2 对量子引力与量子计算的启示

量子引力：孔塞维奇的工作已经深植于量子引力研究中，特别是通过全息原理

（AdS/CFT）和拓扑弦论。如果时空本质上是形变的泊松流形，那么引力可能就是
这种代数形变的几何表现。巴兰德斯的视角则提供了一种补充：如果时空几何是涌

现的，那么它可能源于底层离散随机过程的统计平均。这与“诱导引力”（Induced
Gravity）或“熵力”（Entropic Gravity）的思想不谋而合。

量子计算：巴兰德斯的理论对量子计算有直接的某种“去魅”效果。如果量子计算机
本质上是在模拟一类特殊的（不可分）随机过程，那么量子优越性（Quantum
Supremacy）的来源就不是“并行计算”或“多世界”，而是对一类特定高维概率分布
（由单随机矩阵生成）的高效采样能力 。这也暗示了，通过设计特定的非马尔可夫
经典算法，我们或许能在经典计算机上更高效地模拟量子系统，这正是张量网络

W (x, p)

P (x)
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（Tensor Networks）等现代方法正在尝试的。   

5.3 结论

马克西姆·孔塞维奇与雅各布·巴兰德斯分别从数学的抽象高地和物理的基础实地出
发，向着同一个目标——量子化的本质——掘进。

孔塞维奇的形变量子化是一座宏伟的数学大厦。它证明了经典与量子之间存在着深

层的、结构性的连续性。它告诉我们，如果我们愿意放弃交换性这一旧时代的直

觉，我们就可以拥有一个完美、自洽且普适的几何语言来描述微观世界。这是一种

静态的、结构性的统一。

巴兰德斯的不可分随机理论是一次勇敢的物理探险。它试图通过复兴随机性来剥离

量子力学的神秘外衣，将复数和希尔伯特空间还原为处理复杂概率动力学的工具。

它告诉我们，如果我们愿意接受时间演化的不可分性这一新直觉，我们就可以保留

粒子轨迹和客观实在。这是一种动态的、过程性的统一。

两者的对比最终将我们引向一个更深层的问题：物理学的终极语言是代数（结构）

还是概率（过程）？也许，正如费曼路径积分所暗示的那样，这两者——对历史求
和（过程）与算子演化（代数）——只是同一枚硬币的两面。孔塞维奇揭示了这枚
硬币的代数纹理，而巴兰德斯则试图描述抛掷这枚硬币的随机动力学。未来的物理

学统一理论，必将同时包含这两者的智慧。
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