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ABSTRACT

Training Large Language Models (LLMs) to reason often relies on Reinforcement
Learning (RL) with task-specific verifiers. However, many real-world reasoning-
intensive tasks lack verifiers, despite offering abundant expert demonstrations that
remain under-utilized for reasoning-focused training. We introduce RARO (Rela-
tivistic Adversarial Reasoning Optimization) that learns strong reasoning capabil-
ities from only expert demonstrations via Inverse Reinforcement Learning. Our
method sets up an adversarial game between a policy and a relativistic critic: the
policy learns to mimic expert answers, while the critic aims to identify the experts
among (expert, policy) answer pairs. Both the policy and the critic are trained
jointly and continuously via RL, and we identify the key stabilization techniques
required for robust learning. Empirically, RARO significantly outperforms strong
verifier-free baselines on all of our evaluation tasks — Countdown, DeepMath,
and Poetry Writing — and enjoys the same robust scaling trends as RL with ver-
ifiers. These results demonstrate that our method effectively elicits strong rea-
soning performance from expert demonstrations alone, enabling robust reasoning
learning even when task-specific verifiers are unavailable.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have been driven substantially by improve-
ments in their reasoning abilities. Reasoning enables LLMs to perform deliberate intermediate
computations before producing answers to the user queries, proposing candidate solutions and self-
corrections. Much of this progress has been enabled via Reinforcement Learning (RL) on verifiable
tasks such as mathematics and competitive programming (DeepSeek-AI et al., 2025; Yang et al.,
2025a; Shao et al., 2024; Luo et al., 2025). Notably, recent work has demonstrated that RL with
Verifiable Rewards (RLVR) can enable LLMs to develop robust reasoning capabilities without any
additional supervision (DeepSeek-AI et al., 2025). A growing body of work further improves the
efficiency and stability of such RL algorithms on verifiable tasks, such as DAPO (Yu et al., 2025)
and GSPO (Zheng et al., 2025). However, comparatively little attention has been paid to developing
reasoning abilities on non-verifiable tasks, where task-specific verifiers are unavailable.

Yet, in many impactful and challenging tasks — such as analytical writing, open-ended research,
or financial analysis — LLM outputs are not directly verifiable due to hard-to-specify criteria, wide
variation among acceptable answers, and other practical constraints. A popular approach in these
settings is Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Rafailov
et al., 2023), but they require collecting human preferences beyond demonstration data, which is
often a time-consuming and expensive process.

Without preference data, the typical approach to improving LLM performance in these domains is to
conduct Supervised Fine-Tuning (SFT) on expert demonstration data via the next-token prediction
objective. However, such methods, even if the data are further annotated with reasoning traces, does
not encourage the same reasoning behaviors elicited from large-scale RL training on verifiable tasks
(Chu et al., 2025). Additionally, naive next-token prediction objective induces training-inference
distribution mismatch: during training, the model conditions only on the dataset contexts, whereas
at inference, it conditions on self-sampled contexts. Training on self-sampled contexts, as occurs
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Figure 1: Overview of RARO. The method creates an adversarial game between a policy and a rel-
ativistic critic that share the same weights. The critic is rewarded for identifying the experts among
(expert, policy) answer pairs, while the policy is rewarded for deceiving the critic. Additionally, the
critic can declare tie, yielding stable rewards when the it is unsure. Both the policy and the critic are
trained jointly and continuously via RL.

during RL, yields lower training-inference mismatch, leading to better performance at test time
(Ross et al., 2011). Thus, we hypothesize that leveraging expert demonstrations in conjunction with
RL could cultivate robust reasoning abilities, leading to improved performance on downstream tasks
and offering a new pathway for developing reasoning capabilities in non-verifiable domains.

To this end, we introduce RARO (Relativistic Adversarial Reasoning Optimization), a robust RL
algorithm that trains LLMs to reason using only expert demonstrations without task-specific verifiers
or human preferences.

The key contributions of our work are as follows:

• We propose a novel perspective on training reasoning models via Inverse Reinforcement
Learning (Ng & Russell, 2000). With this perspective, we develop a principled method,
RARO, that enables training reasoning models using demonstration data only.

• We evaluate RARO on a controlled toy reasoning task, Countdown, where it not only
significantly outperforms SOTA baselines without verification, but it nearly matches the
performance of RLVR, demonstrating the effectiveness of RARO on inducing reasoning
behaviors.

• Next, we further stress test RARO’s reasoning elicitation capability by scaling it on the
general domain of math problems via the DeepMath dataset (He et al., 2025), where
RARO again outperforms baselines without verification and exhibits similar scaling trends
as RLVR, demonstrating the scalability of RARO.

• Finally, we demonstrate that RARO’s superior performance generalizes well to non-
verifiable domains by evaluating it on Poetry Writing, where it substantially outperforms
all baselines, underscoring its effectiveness in open-ended tasks without verification.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Chain-of-Thought (CoT) prompting (Wei et al., 2022) is a simple yet effective technique that en-
ables LLMs to generate intermediate reasoning tokens, steering them toward correct answers. This
approach has become a central focus for enhancing reasoning, pairing naturally with test-time scal-
ing for further performance gains (Snell et al., 2024).
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Currently, the standard method to elicit such strong CoT capabilities is Reinforcement Learning
with Verifiable Rewards (RLVR). RLVR methods train LLMs to produce long reasoning traces on
tasks with ground-truth verifiers, enabling recent open-source models to achieve expert-level perfor-
mance (DeepSeek-AI et al., 2025; Yang et al., 2025b).

The dominant algorithm in this space is Group Relative Policy Optimization (GRPO) (Shao et al.,
2024), which builds upon Proximal Policy Optimization (PPO) (Schulman et al., 2017) by estimat-
ing advantages via group-wise sample averages. Subsequent works like DAPO (Yu et al., 2025)
and GSPO (Zheng et al., 2025) have further improved its efficiency and stability. However, while
RLVR is highly effective, it is fundamentally constrained to verifiable tasks such as mathematics
and competitive programming.

2.2 GENERAL REASONING LEARNING

While RLVR is effective for training LLMs to reason on readily verifiable tasks, it does not directly
extend to the broader setting of learning reasoning on real-world domains with no verifiers, yet many
of these tasks could still benefit from explicit reasoning (Zhou et al., 2025).

Although no consensus method exists for general reasoning learning to our knowledge, several re-
cent efforts make early progress. Zhou et al. (2025) and Gurung & Lapata (2025) propose to train
LLMs to reason with reward derived from the model’s own logits on expert answers rather than
from an external verifier. Jia et al. (2025) propose a pairwise generative reward model with a PPO-
style objective for non-verifiable writing tasks, achieving gains without external training signals.
Gunjal et al. (2025) propose using an LLM-as-judge (Gu et al., 2025) together with pre-generated
rubrics from strong LLM to provide rewards for non-verifiable tasks. Ma et al. (2025) distill a
model-based verifier from a strong teacher to train general reasoners without rule-based verifiers. Li
et al. (2025) investigate large-scale multi-task RLVR, hypothesizing that breadth across many tasks
induces stronger general reasoning. We build on this line of work while adopting a demonstration-
only setting and a complementary perspective based on Inverse Reinforcement Learning.

2.3 INVERSE REINFORCEMENT LEARNING

Inverse Reinforcement Learning (IRL) (Ng & Russell, 2000) studies the task of recovering a re-
ward function for which an observed expert policy is near-optimal. A seminal application is robust
imitation learning, most notably Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon,
2016), casting imitation as an adversarial game between a policy and a discriminator.

Sun & van der Schaar (2025) recently investigated the application of IRL for aligning LLMs with
expert demonstrations. They show that a classifier trained in the IRL paradigm can serve as an effec-
tive reward model for Best-of-N sampling. However, their work stops short of exploring stable, joint
adversarial training, or reasoning-intensive tasks, where the model must learn to navigate complex
solution spaces rather than aligning with surface-level preferences.

3 METHOD

We study the general setting where we are given an expert Question–Answer (QA) dataset, and we
aim to train a reasoning LLM policy to produce expert-level answers via explicit CoT reasoning. We
adopt this setting because verifiable tasks are relatively scarce, whereas expert demonstration data
are abundant for many non-verifiable domains (e.g., highly upvoted Stack Exchange answers).

To approach this task, we propose a novel inverse reinforcement learning framework that sets up an
adversarial interaction between a reasoning policy and a relativistic critic: the policy learns to output
expert-like answers, while the critic learns to discriminate between policy and expert answers via
pairwise comparison. By jointly training both the policy and the critic to reason via RL, we enable
the emergence of strong reasoning capabilities from demonstrations alone, without requiring task-
specific verifiers.
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3.1 REASONING OPTIMIZATION VIA INVERSE REINFORCEMENT LEARNING

Setup. Let D = {(qi, ai)}ni=1 denote the expert QA dataset. We parameterize our reasoning policy
as a conditional latent-variable model (Phan et al., 2023) πθ(a, z | q), a distribution over answers
a and CoT reasonings z conditioned on a question q. We let p̂q denote the empirical distribution of
questions in D, p̂a|q denote the empirical distribution of expert answers conditioned on a question,
and the joint p̂D = p̂a|qp̂q denote the empirical distribution of dataset pairs (q, a).

A natural baseline for producing expert-quality answers is the maximum likelihood (ML) objective
on expert demonstrations: argmaxθ E(q,a)∼p̂D

[log πθ(a | q)].

However, for models that perform CoT reasoning before producing an answer, each (q, a) is asso-
ciated with many possible CoT traces. Thus, the marginal likelihood required by the ML objective,
πθ(a | q) =

∑
z πθ(a, z | q), involves summing over a combinatorially large (often effectively un-

bounded) set of traces, rendering exact computation and its gradients computationally impractical.

Inverse Reinforcement Learning. To address this intractability, we adopt the perspective of
Inverse Reinforcement Learning (IRL). Rather than maximizing the marginal likelihood directly,
we learn a parameterized reward rϕ(a, q) over QA pairs such that optimizing πθ with respect to rϕ
yields a “near-optimal” policy that approximately maximizes the ML objective.

We formalize “near-optimality” via the KL-regularized reward-maximization objective. Under this
objective, it can be shown (Peng et al., 2019) that the optimal policy has marginal:

πθ⋆(ϕ)(a | q) =
1

Zθ⋆(ϕ)(q)
πref(a | q) exp

{
1

β
rϕ(a, q)

}
,

where Zθ⋆(ϕ)(q) is the partition function, πref is a fixed reference policy, and β > 0 controls the
strength of the KL-regularization. See Appendix A.1 for the full proof.

With a closed-form expression for the optimal marginal under reward model rϕ, we have a concrete
pathway to optimize ϕ such that πθ⋆(ϕ) maximizes the ML objective. Specifically, as shown in
Appendix A.2, we can directly optimize ϕ via gradient ascent with the following gradient:

∇ϕL(ϕ) =
1

β

(
E(q,a)∼p̂D

[
∇ϕrϕ(a, q)

]︸ ︷︷ ︸
expert answers

−Eq∼p̂q
Ea′∼πθ⋆(ϕ)(·|q)

[
∇ϕrϕ(a

′, q)
]︸ ︷︷ ︸

policy answers

)
.

Finally, approximating πθ⋆(ϕ) by optimizing πθ with reward rϕ via RL, we have an algorithm that
optimizes reasoning policy πθ with respect to the ML objective as shown in Algorithm 1.

Algorithm 1 Alternating Policy-Reward Optimization
Inputs: Dataset D = {(qi, ai)}; Batch B; Learning rates ηr, ηπ .
Models: Reward rϕ(a, q); Reasoning policy πθ(a, z | q).

1: Initialize ϕ, θ
2: for t = 1, . . . , T do
3: Draw {(qi, aEi )}Bi=1 with qi∼ p̂q, a

E
i ∼ p̂a|q(· | qi)

4: For each i ∈ [1..B], sample (zi, a
P
i )∼πθ(·, · | qi)

5: Reward update:

ϕ← ϕ+ ηr ·
1

β

(
1

B

B∑
i=1

∇ϕrϕ(a
E
i , qi)−

1

B

B∑
i=1

∇ϕrϕ(a
P
i , qi)

)
6: Policy update: KL-regularized GRPO with rϕ(a, q) as the reward.
7: end for
8: return θ, ϕ
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3.2 REASONING CRITIC AS REWARD MODEL

To instantiate this framework, we need to decide on an appropriate architecture for the reward model
rϕ. Our setting targets difficult QA tasks that benefit from reasoning. Thus, to reliably separate
expert from policy answers, we expect the reward model to be at least as capable as the policy.

To this end, we represent rϕ with a reasoning critic cϕ that takes an (q, a) pair and outputs ℓ ∈
{expert,policy}, classifying whether an answer is from the expert or the policy. Specifically, we
parametrize rϕ as the probability of classifying as expert for a (q, a) pair.

Under this parameterization, as shown in Appendix A.3, the gradient ∇ϕL corresponds to the stan-
dard policy gradient, resulting in simple reward functions for the critic and policy.

Reward for Critic:
Rcritic(ℓ, a, q) = 1ℓ is correct

Reward for Policy:
Rpolicy(a, q) = 1ℓ=expert, ℓ ∼ cϕ(· | a, q)

This allows us to optimize both the critic and policy using GRPO.

Such reward formulation creates an adversarial game between the critic and policy: the critic is
rewarded when it correctly classifies answer as coming from the expert or policy, while the policy is
rewarded when the critic incorrectly classifies its answer as an expert answer.

3.3 RELATIVISTIC CRITIC: THE PAIRWISE ADVANTAGE

Despite the theoretical soundness, the previous setup poses challenges for critic learning. As policy
approaches the expert, the classification task becomes much more difficult due to a lack of reference
answer for the critic to compare against. In addition, with an optimal policy, the critic effectively
degenerates to random guessing, providing high-variance, uninformative gradients to the policy,
leading to training instability as we observed (see Appendix D.2).

To address these limitations, we instead adopt a relativistic formulation: the critic takes a triplet
(q, a, a∗) consisting of one policy answer and one expert answer, and outputs which is better or tie
if they are equal in quality. This resolves the degeneracy where the critic is forced to differentiate
even when the policy is optimal. We empirically show that the tie option is crucial for better
performance (see Appendix D.2).

Formally, the relativistic critic cϕ takes a question q and two candidate answers (a(1), a(2)) and
returns a label ℓ ∈ {1, 2, tie}. Assuming one expert and one policy answer, we can define:

Reward for Critic:

Rcritic
(
q, a(1), a(2)

)
= 1ℓ is expert + τcrit · 1ℓ=tie, τcrit ∈ [0, 1].

Reward for Policy:

Rpolicy
(
q, a(1), a(2)

)
= 1ℓ is policy + τpol · 1ℓ=tie, τpol ∈ [0, 1].

where τcrit and τpol are tie rewards, new hyperparameters introduced to handle the tie label.

Unlike the binary classification setup, the relativistic critic is now given a pairwise comparison task:
the critic is rewarded when it correctly identifies the expert answer, and the policy is rewarded when
the critic mistakenly identifies its answer as the expert answer, with additional tie rewards to ensure
non-degeneracy and stable learning.

3.4 RARO: RELATIVISTIC ADVERSARIAL REASONING OPTIMIZATION

Finally, we identify the key techniques for stable and efficient training. First, we use a shared LLM
for both the critic and the policy, which reduces memory usage and promotes generalization. This
allows us to employ data mixing, where policy and critic rollouts are combined in a single batch,
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simplifying the training loop. To prevent the critic from catastrophic forgetting, we sample critic
prompts from a replay buffer that stores all past expert and policy answers. Finally, we incorporate
several practical improvements to the GRPO algorithm, such as over-length filtering and removing
advantage/length normalization. For full implementation details, please refer to Appendix C.1.

Incorporating all of these optimizations into a concrete algorithm, we arrive at our final algorithm,
RARO (Relativistic Adversarial Reasoning Optimization), shown in Algorithm 2.

Algorithm 2 RARO (Relativistic Adversarial Reasoning Optimization)
Inputs: Dataset D = {(qi, ai)}; Tie reward τpol, τcrit; Loss weight λpol, λcrit; Batch B; Rollout K.
Model: Shared θ → πθ, cθ. Replay bufferR.

1: Initialize θ,R ← ∅;
2: for t = 1, . . . , T do
3: Rnew ← ∅
4: Draw {(qi, aEi )}Bi=1 ∼ D

5: for i = 1 . . . B, k = 1 . . .K do

6:

(zPi,k, a
P
i,k) ∼ πθ(· | qi); build pair (aEi , a

P
i,k)

ℓi,k ∼ cθ(· | qi, aEi , aPi,k)

Rpol
i,k ← 1ℓi,k is policy + τpol1ℓi,k=tie

Rnew ← Rnew ∪ {(qi, aEi , aPi,k)}

 Policy rollouts

7: end for
8: C ← Mix(Rnew,R)
9: R ← R∪Rnew

10: for (qj , a
E
j , a

P
j ) ∈ C do

11:
ℓj ∼ cθ(· | qj , aEj , aPj )
Rcrit

j ← 1ℓj is expert + τcrit1ℓj=tie

}
Critic rollouts

12: end for
13: GRPO step on θ to maximize: λpolJpol(θ) + λcritJcrit(θ)− βDKL(πθ∥πref)
14: end for
15: return θ

4 EXPERIMENTAL SETUP

4.1 TASKS & DATASETS

We evaluate RARO on three diverse reasoning tasks that probe complementary aspects of reasoning.
See Appendix C.2 for more details on the datasets.

Countdown. First, we evaluate our method on the Countdown task, a controlled toy reasoning
task where answer verification is much simpler than answer generation. We use a 24-style variant
where the goal is to combine four integers to obtain 24 (see Appendix C.2 for details). Through
this task, we aim to study the effectiveness of our method on reasoning capabilities in a controlled
environment where answer checking is much easier than solution search.

DeepMath. Then, we evaluate our method on the domain of general math reasoning problems
using the DeepMath dataset (He et al., 2025). Compared to Countdown, answer verification in the
general math domain is significantly more challenging, often requiring solving the problem from
scratch. Through this task, we aim to stress test our method on difficult reasoning environments
where verification is as difficult as generation.

Poetry Writing. Finally, we extend our method to its intended setting of non-verifiable, open-
ended reasoning tasks. While there exists benchmarks for non-verifiable domains (Arora et al.,
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2025; Paech, 2024), there is no official training data associated with them. Thus, we choose to
evaluate our method and baselines on a custom Poetry Writing dataset. Unlike the math tasks,
poetry writing does not admit an objective verifier. Thus, for evaluation, we use GPT-5 (OpenAI,
2025) as a judge to evaluate poems in both isolation and in comparison to the expert poem (see
Appendix C.2 for details). This task represents the non-verifiable regime that our method aims to
handle, where explicit reasoning could significantly improve quality.

4.2 BASELINES

We compare RARO against several strong post-training baselines under the same dataset, training,
and evaluation setup.

Supervised Fine-Tuning (SFT). The SFT baseline trains the base models to directly maximize
the conditional log-likelihood of the expert answer given the question, representing the standard use
of demonstration data.

Rationalization. Following prior work on self-rationalizing techniques (Zelikman et al., 2022),
we construct a rationalization baseline that augments each expert answer with an explicit CoT. Con-
cretely, we prompt the base model to annotate the expert demonstrations with free-form rationale,
then perform SFT on the concatenated (question, rationale, answer) sequences. This baseline at-
tempts to incentivize the base model to learn to reason before producing the final answer.

Iterative Direct Preference Optimization (DPO). A natural way to match the policy’s output
distribution to the expert is to apply Iterative DPO (Rafailov et al., 2024). Inspired by Iterative
Reasoning Preference Optimization (Pang et al., 2024), we perform 3 rounds of DPO iteratively: in
each round, we sample one response per question to form preference pairs favoring the expert. We
initialize from the SFT checkpoint to mitigate distribution mismatch and report the best performance
across rounds.

RL from logit-based reward (RL-Logit). Recent work has proposed training reasoning LLMs
via RL where the reward is derived from the model’s own logits on expert answers rather than from
an external verifier (Zhou et al., 2025; Gurung & Lapata, 2025). We implement two variants of such
logit-based rewards (see Appendix C.3 for details):

• a log-probability reward, which uses the log-probability of the expert answer a⋆ given the
question q and generated reasoning tokens z as the scalar reward log πθ(a

⋆ | q, z); and

• a perplexity reward, which instead maximizes the negative perplexity of the expert answer
under the same conditional distribution.

In our evaluation, we report the metrics from the best performing variant.

RL with Verifiable Reward (RLVR). For Countdown and DeepMath, where ground-truth veri-
fiers are available, we additionally include a RLVR baseline trained with GRPO on binary rewards
given by the verifier. This corresponds to the standard RLVR setting, and serves as an upper-bound
for our method on tasks where verification is accessible.

4.3 TRAINING & EVALUATION SETUP

We evaluate our method and baselines on the Qwen2.5 (Qwen et al., 2025) family of models, and
to focus on improving reasoning performance rather than language understanding, we initialize
from the instruction-tuned checkpoints instead of the pretrained model checkpoints. We select the
Qwen2.5 family because they are popular non-reasoning LLMs, allowing us to study the effective-
ness of our method on eliciting reasoning behaviors in a controlled manner.

Countdown and DeepMath are evaluated with a ground-truth verifier, while Poetry Writing is eval-
uated with GPT-5 as a judge in two fashions: a scalar score normalized from 1-7 to 0-100 and a
win-rate against the expert poem. For both fashions, we prompt GPT-5 to focus its evaluations on
prompt adherence and literary qualities. See Appendix C.2 for further details.
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Each dataset is split into train, validation, and test sets, and for each method, we select the non-initial
checkpoint with the highest validation performance. We match dataset splits, rollout budgets, hyper-
parameters, and sampling configurations for all methods when possible to ensure a fair comparison.
Unless otherwise specified, all methods are trained and evaluated with a reasoning budget of 2048
tokens. Full implementation details and hyperparameters are provided in Appendix C.

5 MAIN RESULTS

We present our experimental results structured by task: Countdown, DeepMath, and Poetry Writing.
Across these domains, we observe that our method significantly and consistently outperforms all
baselines, scaling effectively with both reasoning budget and model size.

5.1 COUNTDOWN

Method Countdown
accuracy (%) ↑

RLVR (with verifier) 57.7± 1.6

Base 2.0± 0.4
SFT 40.7± 1.6
Rationalization 12.5± 1.0
Iterative DPO 40.4± 1.5
RL-Logit 2.2± 0.4
RARO 54.4± 1.5

Table 1: Main Countdown Results. RARO
against baselines at a fixed reasoning budget
of 2048 tokens.

Table 2: Reasoning Budget Scaling on
Countdown. Our method scales effectively
with both training and test-time token bud-
get, unlike SFT (best baseline). See Table 8
in Appendix E for detailed data.

We first evaluate RARO on the Countdown task, a
controlled toy reasoning task where answer verifica-
tion is much simpler than answer generation. For
this task, we focus our investigation at the 1.5B
model size and further ablate our method and base-
lines with respect to both the training and test-time
reasoning token budget. We do not ablate along
model size as Countdown is a straightforward task
where the reasoning budget is the primary bottleneck
rather than model capacity (see Appendix D.1 for
additional details).

Superior Performance at Fixed Budget. At a
fixed reasoning budget of 2048 tokens, RARO
achieves 54.4% accuracy, significantly outperform-
ing the best verifier-free baseline (SFT, 40.7%) by
13.7% and nearly matching the oracle RLVR base-
line (57.7%) (Table 1). We also notice that RL-Logit
(2.2%) and Rationalization (12.5%) perform rather
poorly, and we hypothesize that it is likely due to the
base model’s inability to produce high-quality ratio-
nalizations or informative logits. The strong perfor-
mance of RARO demonstrates that our learned critic
provides a signal comparable to verification rewards.

Emergence of Self-Correcting Search. A key
qualitative finding is the emergence of explicit
search behaviors. As shown in Figure 5, our model
learns to explore the solution space dynamically
proposing combinations, verifying them, and back-
tracking when they are incorrect (e.g., “too high”).
This self-correction mechanism acts as an internal verifier, allowing the model to recover from er-
rors. Such behavior is absent in the SFT baseline, as it is trained to directly output a candidate
answer without any explicit reasoning.

Scaling with Reasoning Budget. Finally, we examine the scalability of RARO with respect to
both training and test-time reasoning token budget. Figure 2 illustrates a clear trend: while the
SFT baseline’s performance plateaus at 40.7% regardless of the token budget, our method exhibits
continuous improvement as the budget increases, rising from 33.1% at 256 tokens to 61.3% at
4096 tokens. Notably, the result at 4096 tokens is achieved by a model trained with a 2048-token
budget, demonstrating that our method can extrapolate to longer reasoning chains at test time without
additional training. This scaling behavior confirms that RARO successfully transforms reasoning
budget into better performance, a hallmark of effective reasoning.
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5.2 DEEPMATH

Next, we evaluate RARO on the DeepMath dataset, a collection of general math problems. For the
DeepMath task, we focus on scaling our method and baselines with respect to model size instead of
reasoning budget, as it is a much more difficult setting where model capacity is a real bottleneck in
performance.

Method DeepMath Poetry Poetry
accuracy (%) ↑ score (0-100) ↑ win-rate (%) ↑

(vs. expert)

1.5B
RLVR (with verifier) 50.9± 1.9 N/A N/A

Base 29.6± 1.9 35.0± 0.9 0.0± 0.0
SFT 35.7± 1.8 53.7± 1.0 2.3± 1.0
Rationalization 34.5± 2.0 35.6± 1.6 0.8± 0.5
Iterative DPO 33.0± 1.9 48.6± 0.9 0.0± 0.0
RL-Logit 37.7± 1.9 36.4± 0.7 0.0± 0.0
RARO 41.3± 1.9 67.8± 0.8 7.8± 1.7

3B
RLVR (with verifier) 55.8± 2.0 N/A N/A

Base 39.4± 1.9 46.5± 0.9 0.0± 0.0
SFT 39.0± 1.9 57.4± 1.0 2.3± 1.0
Rationalization 32.3± 1.9 30.8± 1.9 0.4± 0.4
Iterative DPO 34.2± 1.9 69.8± 0.8 6.6± 1.5
RL-Logit 43.1± 2.0 46.9± 0.8 0.4± 0.4
RARO 49.1± 1.9 71.9± 0.8 17.2± 2.4

7B
RLVR (with verifier) 66.2± 1.9 N/A N/A

Base 44.2± 2.1 54.0± 0.9 1.2± 0.7
SFT 42.3± 1.9 65.4± 1.0 5.9± 1.4
Rationalization 48.6± 1.9 57.7± 1.2 5.1± 1.3
Iterative DPO 36.9± 2.0 66.5± 0.9 5.1± 1.4
RL-Logit 49.3± 2.0 55.4± 0.8 3.9± 1.2
RARO 57.5± 2.0 77.3± 0.8 25.0± 2.6

Table 3: Main results for DeepMath and Poetry. We report results for RARO against baselines
on DeepMath and Poetry Writing across model scales with a reasoning budget of 2048 tokens. For
Iterative DPO, we report the max of the 3 rounds. For RL-Logit, we report the best over the 2
variants. See Table 13 in Appendix E for full data.

Significant Improvement over Baselines. As reported in Table 3, RARO consistently outper-
forms all verifier-free baselines across model scales. With the 1.5B model, we achieve 41.3% accu-
racy compared to 37.7% for the best baseline (RL-Logit), an improvement of 3.6%. This advantage
grows with model size: at 3B, our method (49.1%) surpasses the best baseline (RL-Logit, 43.1%)
by 6.0%, and at 7B, it reaches 57.5%, beating it by 8.2%. These results demonstrate that our adver-
sarial learning framework provides a strong signal for reasoning that outperforms not only purely
supervised approaches like SFT or Rationalization but also RL-Logit.

Stable Training Dynamics. We further analyze the training dynamics of RARO on DeepMath.
As shown in Figure 3 and further in Appendix B, our coupled training objective maintains a robust
equilibrium, allowing the policy to steadily improve its reasoning capabilities and response length
without collapsing. This stability confirms the robustness of our optimization procedure.

9



Figure 2: Performance scaling. RARO con-
sistently improves with model size (1.5B to 7B)
across both DeepMath and Poetry Writing.

Figure 3: Stable Reward and Length Growth.
The validation reward and response length of
RARO on DeepMath (1.5B) continuously grows
over time, indicating a stable dynamic.

Figure 4: Test-time Scaling (TTS) on Deep-
Math. Performance improves as the number of
rollouts (N ) increases for all model sizes. See Ta-
ble 9 in Appendix E for detailed data.

Effective Test-Time Scaling. Another key
advantage of RARO is that our learned critic
enables natural Test-Time Scaling (TTS) to fur-
ther improve the policy’s performance. Specifi-
cally, our critic’s pairwise comparison setup al-
lows for a single-elimination tournament with
the critic as the judge (see Algorithm 3), en-
abling further policy improvements with addi-
tional rollouts. As shown in Figure 4 (and de-
tailed in Table 9), increasing the number of roll-
outs from 1 to 16 consistently improves per-
formance. Notably, with 16 rollouts, RARO
achieves 53.6% on the 1.5B model and 57.9%
on the 3B model. When comparing against the
RLVR baseline with the same TTS strategy (Ta-
ble 10), we observe that RARO achieves a sim-
ilar rate of improvement. This result highlights
that RARO, when combined with test-time search, can scale effectively, matching the scaling trends
of models trained with oracle verifiers.

5.3 POETRY WRITING

Finally, we study RARO on Poetry Writing, an open-ended, un-verifiable domain that benefits from
specialized reasoning capabilities. For this task, similar to DeepMath, we study RARO across a
range of model sizes.

Surpassing Supervised Baselines. Table 13 reveals a striking performance gap between RARO
and baselines. While SFT and Rationalization achieve modest win-rates against expert poetry (peak-
ing at 5.9% with the 7B model), RARO reaches 25.0%, a four-fold improvement. This advantage is
also reflected in the scoring evaluation, where RARO consistently surpasses baselines (e.g., 67.8 vs.
53.7 for SFT at 1.5B). Notably, RL-Logit, leading baseline for DeepMath, fails to produce compet-
itive results, yielding near-zero improvement over the base model (36.4 vs. 35.0 at 1.5B) for both
the win-rate and scoring evaluation.

Scaling Creative Capabilities. A key result is the scalability of RARO with model size in the
creative domain. As we increase model capacity from 1.5B to 7B, the win-rate against expert human
poems grows substantially, from 7.8% to 25.0%. The scoring evaluation similarly improves from
67.8 to 77.3. This trend shows that just like verifiable domains, RARO continues to effectively scale
with model size in open-ended domains.

Emergent Qualitative Reasoning. Qualitatively, RARO induces explicit planning and reasoning
behaviors. As shown in Figure 5, the model learns to decompose complex problems into structured
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Countdown

Use the four numbers 19, 11, 48, and 6 to
create an expression that equals 24.

RARO Policy

To find an expression using the four
numbers 19, 11, 48, and 6 that equals 24,
let’s try different combinations.

1. (48 - 11) * (19 - 6) = 37 * 13 =
481 (too high)
2. (48 - 19) * (11 - 6) = 29 * 5 = 145 (too
high)
...
20. 48 / (19 - (11 + 6)) = 48 / (19 - 17) =
48 / 2 = 24 (correct)

Answer: 48/(19 − (11 + 6))

DeepMath

Find the equation of the normal line to the
curve (x2 + y2)3/2 = 2xy at the point(

1√
2
, 1√

2

)
.

RARO Policy

To find the equation of the normal line
to the curve (x2 + y2)3/2 = 2xy at

the point
(

1√
2
, 1√

2

)
, we need to follow

these steps:

1. Differentiate the curve implicitly
to find the slope of the tangent line at the
given point.
2. Use the slope of the tangent line to find
the slope of the normal line.
3. Write the equation of the normal line
using the point-slope form.

Let’s start with...

Answer: y = x

Poetry Writing

a poem about a child’s fragmented mem-
ory of a father leaving, told in intimate,
sensory free verse

RARO Policy

To create such a poem, I’d:

1. Focus on sensory details that might
linger in a child’s memory.
...
4. Incorporate physical and emotional
sensations that capture the essence of the
scene.

Answer:
One Memory of My Father Leaving

There was the sound
of a suitcase rolling
on the hallway carpet;
. . .
or a man thinking
and trying not to cry.

Figure 5: Qualitative examples for Countdown (1.5B), DeepMath (7B), and Poetry Writing
(7B). For each task, we show the input (top) and the truncated reasoning and answer sampled from
policies trained with RARO (bottom). See Appendix E for full examples as well as example critic
inputs and outputs.

plans. Specifically, in Poetry Writing, it decomposes the prompt into key themes (e.g., “sensory
details”, “fragmented memory”) and stylistic constraints (e.g., “free verse”, “unrhymed, natural
cadences”) before generating the poem. This demonstrates that RARO effectively elicits reasonings
that align the model’s output to the task requirements.

6 CONCLUSION & FUTURE WORK

We introduced RARO (Relativistic Adversarial Reasoning Optimization), a novel approach to train-
ing reasoning LLMs using only expert demonstrations, thereby bypassing the need for task-specific
verifiers or expensive preference annotations. By formulating the problem as Inverse Reinforcement
Learning and incorporating a relativistic critic setup, we obtain a principled and stable adversarial
training algorithm that yields strong reasoning capabilities.

Our experiments demonstrate the effectiveness of RARO: (i) on the controlled Countdown task, it
not only outperforms verifier-free baselines but also nearly matches the performance of RLVR; (ii)
on the general math domain, it exhibits similar desirable scalability trends to RLVR while outper-
forming baselines without verification; and (iii) on the open-ended Poetry Writing task, it success-
fully elicits emerging specialized reasoning capabilities and significantly surpasses all baselines.
Together, these findings suggest that RARO is a promising and practical approach for training rea-
soning models without reliance on explicit verifiers.

Future work includes: (i) extending the framework to more generalized adversarial setups that sta-
bilize training across diverse domains; (ii) improving sample efficiency; (iii) scaling the method to
larger, state-of-the-art model sizes; and (iv) developing an alternative critic setup that enables better
reward interpretability. See Appendix B for more details.

REFERENCES

Rahul K. Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quiñonero-Candela,
Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, Johannes

11



Heidecke, and Karan Singhal. Healthbench: Evaluating large language models towards improved
human health, 2025. URL https://arxiv.org/abs/2505.08775.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning. CoRR, abs/2501.12948, January 2025.
URL https://doi.org/10.48550/arXiv.2501.12948.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https:
//arxiv.org/abs/1406.2661.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL https://arxiv.org/abs/
2411.15594.

Anisha Gunjal, Anthony Wang, Elaine Lau, Vaskar Nath, Yunzhong He, Bing Liu, and Sean
Hendryx. Rubrics as rewards: Reinforcement learning beyond verifiable domains, 2025. URL
https://arxiv.org/abs/2507.17746.

Alexander Gurung and Mirella Lapata. Learning to reason for long-form story generation, 2025.
URL https://arxiv.org/abs/2503.22828.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu,
Zhenwen Liang, Wenxuan Wang, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and
Dong Yu. Deepmath-103k: A large-scale, challenging, decontaminated, and verifiable mathemat-
ical dataset for advancing reasoning, 2025. URL https://arxiv.org/abs/2504.11456.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016. URL https:
//arxiv.org/abs/1606.03476.

Ruipeng Jia, Yunyi Yang, Yongbo Gai, Kai Luo, Shihao Huang, Jianhe Lin, Xiaoxi Jiang, and
Guanjun Jiang. Writing-zero: Bridge the gap between non-verifiable tasks and verifiable rewards,
2025. URL https://arxiv.org/abs/2506.00103.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data, 2020. URL https://arxiv.org/abs/
2006.06676.

Peiji Li, Jiasheng Ye, Yongkang Chen, Yichuan Ma, Zijie Yu, Kedi Chen, Ganqu Cui, Haozhan
Li, Jiacheng Chen, Chengqi Lyu, Wenwei Zhang, Linyang Li, Qipeng Guo, Dahua Lin, Bowen
Zhou, and Kai Chen. Internbootcamp technical report: Boosting llm reasoning with verifiable
task scaling, 2025. URL https://arxiv.org/abs/2508.08636.

KJ Liang and L Carin. Generative adversarial network training is a continual learning problem.
arXiv preprint arXiv:1811.11083, 2018.

12

https://arxiv.org/abs/2505.08775
https://arxiv.org/abs/2501.17161
https://doi.org/10.48550/arXiv.2501.12948
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2507.17746
https://arxiv.org/abs/2503.22828
https://arxiv.org/abs/2504.11456
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/2506.00103
https://arxiv.org/abs/2006.06676
https://arxiv.org/abs/2006.06676
https://arxiv.org/abs/2508.08636


Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective. In Conference on Language
Modeling (COLM), 2025.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang
Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Er-
ran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
14b coder at o3-mini level. https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51,
2025. Notion Blog.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains, 2025. URL https://arxiv.org/abs/2505.
14652.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, ICML ’00, pp. 663–670, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.

OpenAI. Gpt-5, 2025. URL https://openai.com. Technical report, unreleased.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Samuel J. Paech. Eq-bench: An emotional intelligence benchmark for large language models, 2024.
URL https://arxiv.org/abs/2312.06281.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization, 2024. URL https://arxiv.org/
abs/2404.19733.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019. URL https://arxiv.org/
abs/1910.00177.

Du Phan, Matthew D. Hoffman, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi, Pavel
Sountsov, Charles Sutton, Sharad Vikram, and Rif A. Saurous. Training chain-of-thought via
latent-variable inference, 2023. URL https://arxiv.org/abs/2312.02179.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa9.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

13

https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://arxiv.org/abs/2505.14652
https://arxiv.org/abs/2505.14652
https://openai.com
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2312.06281
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/2312.02179
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2305.18290


Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav
Dudı́k (eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Research, pp. 627–635, Fort Laud-
erdale, FL, USA, 11–13 Apr 2011. PMLR. URL https://proceedings.mlr.press/
v15/ross11a.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Hao Sun and Mihaela van der Schaar. Inverse-rlignment: Large language model alignment from
demonstrations through inverse reinforcement learning, 2025. URL https://arxiv.org/
abs/2405.15624.

Hoang Thanh-Tung and T. Tran. Catastrophic forgetting and mode collapse in gans. 2020 In-
ternational Joint Conference on Neural Networks (IJCNN), pp. 1–10, 2020. URL https:
//api.semanticscholar.org/CorpusID:221659882.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025b. URL https://arxiv.org/abs/2505.09388.

Feng Yao, Liyuan Liu, Dinghuai Zhang, Chengyu Dong, Jingbo Shang, and Jianfeng Gao. Your
efficient rl framework secretly brings you off-policy rl training, August 2025. URL https:
//fengyao.notion.site/off-policy-rl.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,

14

https://proceedings.mlr.press/v15/ross11a.html
https://proceedings.mlr.press/v15/ross11a.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2405.15624
https://arxiv.org/abs/2405.15624
https://api.semanticscholar.org/CorpusID:221659882
https://api.semanticscholar.org/CorpusID:221659882
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://fengyao.notion.site/off-policy-rl
https://fengyao.notion.site/off-policy-rl


Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy op-
timization, 2025. URL https://arxiv.org/abs/2507.18071.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

15

https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2507.18071


A DERIVATIONS

A.1 DERIVATION OF CLOSED-FORM OPTIMAL POLICY

Proposition A.1. Consider the KL-regularized reward-maximization objective:

θ⋆(ϕ) = argmax
θ

E(q,a)∼p̂D

[
rϕ(a, q)− β DKL

(
πθ(· | q) ∥πref(· | q)

)]
.

The optimal policy has the following closed-form solution:

πθ⋆(ϕ)(a | q) =
1

Zθ⋆(ϕ)(q)
πref(a | q) exp

{
1

β
rϕ(a, q)

}
,

where Zθ⋆(ϕ)(q) is the partition function ensuring normalization.

Proof. We derive the closed-form solution for the KL-regularized reward maximization objective.
Consider the objective function for a single question q:

J (π) = Ea∼π(·|q) [rϕ(a, q)]− βDKL

(
π(· | q) ∥πref(· | q)

)
. (1)

Expanding the KL divergence term:

DKL(π∥πref) = Ea∼π(·|q)

[
log

π(a | q)
πref(a | q)

]
= Ea∼π(·|q) [log π(a | q)− log πref(a | q)] .

Substituting this back into the objective:

J (π) = Ea∼π(·|q) [rϕ(a, q)− β log π(a | q) + β log πref(a | q)]

= β Ea∼π(·|q)

[
1

β
rϕ(a, q) + log πref(a | q)− log π(a | q)

]
= −β Ea∼π(·|q)

[
log π(a | q)−

(
log πref(a | q) +

1

β
rϕ(a, q)

)]
.

Let us define the normalized Gibbs distribution:

π∗(a | q) = 1

Z(q)
πref(a | q) exp

(
1

β
rϕ(a, q)

)
, (2)

where Z(q) =
∫
πref(a

′ | q) exp
(

1
β rϕ(a

′, q)
)
da′ is the partition function. Taking the logarithm of

π∗:

log π∗(a | q) = log πref(a | q) +
1

β
rϕ(a, q)− logZ(q). (3)

Substituting log πref(a | q) + 1
β rϕ(a, q) = log π∗(a | q) + logZ(q) into the objective:

J (π) = −β Ea∼π(·|q)
[
log π(a | q)−

(
log π∗(a | q) + logZ(q)

)]
= −β

(
Ea∼π(·|q)

[
log

π(a | q)
π∗(a | q)

]
− logZ(q)

)
= −βDKL(π∥π∗) + β logZ(q).

Since β > 0 and logZ(q) does not depend on π, maximizing J (π) is equivalent to minimizing the
KL divergence DKL(π∥π∗). By Gibbs’ inequality, DKL(π∥π∗) ≥ 0, with equality if and only if
π = π∗ almost everywhere. Thus, the optimal policy is given by:

πθ⋆(ϕ)(a | q) = π∗(a | q) = 1

Z(q)
πref(a | q) exp

(
1

β
rϕ(a, q)

)
. (4)
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A.2 PROOF OF REWARD GRADIENT

Proposition A.2. Using the closed-form policy, the gradient of the maximum likelihood objective
L(ϕ) = E(q,a)∼p̂D

[
log πθ⋆(ϕ)(a | q)

]
with respect to ϕ is:

∇ϕL(ϕ) =
1

β

(
E(q,a)∼p̂D

[
∇ϕrϕ(a, q)

]
− Eq∼p̂q Ea′∼πθ⋆(ϕ)(·|q)

[
∇ϕrϕ(a

′, q)
])

.

Proof. We aim to derive the gradient of the data log-likelihood objective with respect to the reward
parameters ϕ. Recall the objective:

L(ϕ) = E(q,a)∼p̂D
[log πθ⋆(ϕ)(a | q)]. (5)

The optimal policy πθ⋆(ϕ) takes the closed-form solution:

πθ⋆(ϕ)(a | q) =
1

Zθ⋆(ϕ)(q)
πref(a | q) exp

(
1

β
rϕ(a, q)

)
, (6)

where Zθ⋆(ϕ)(q) =
∫
πref(a

′ | q) exp
(

1
β rϕ(a

′, q)
)
da′ is the partition function.

Substituting the policy expression into the log-likelihood:

log πθ⋆(ϕ)(a | q) = log

πref(a | q) exp
(

1
β rϕ(a, q)

)
Zθ⋆(ϕ)(q)


= log πref(a | q) +

1

β
rϕ(a, q)− logZθ⋆(ϕ)(q).

Since πref does not depend on ϕ, the gradient is:

∇ϕ log πθ⋆(ϕ)(a | q) = ∇ϕ

(
1

β
rϕ(a, q)− logZθ⋆(ϕ)(q)

)
=

1

β
∇ϕrϕ(a, q)−

∇ϕZθ⋆(ϕ)(q)

Zθ⋆(ϕ)(q)
.

We now compute the gradient of the partition function Zθ⋆(ϕ)(q) using the Leibniz integral rule
(interchanging gradient and integral):

∇ϕZθ⋆(ϕ)(q) = ∇ϕ

∫
πref(a

′ | q) exp
(
1

β
rϕ(a

′, q)

)
da′

=

∫
πref(a

′ | q)∇ϕ exp

(
1

β
rϕ(a

′, q)

)
da′

=

∫
πref(a

′ | q) exp
(
1

β
rϕ(a

′, q)

)(
1

β
∇ϕrϕ(a

′, q)

)
da′.

Substituting this back into the gradient term for logZθ⋆(ϕ)(q):

∇ϕZθ⋆(ϕ)(q)

Zθ⋆(ϕ)(q)
=

∫ πref(a
′ | q) exp

(
1
β rϕ(a

′, q)
)

Zθ⋆(ϕ)(q)

(
1

β
∇ϕrϕ(a

′, q)

)
da′

=

∫
πθ⋆(ϕ)(a

′ | q)
(
1

β
∇ϕrϕ(a

′, q)

)
da′

= Ea′∼πθ⋆(ϕ)(·|q)

[
1

β
∇ϕrϕ(a

′, q)

]
.

Finally, averaging over the dataset (q, a) ∼ p̂D:

∇ϕL(ϕ) = E(q,a)∼p̂D

[
1

β
∇ϕrϕ(a, q)− Ea′∼πθ⋆(ϕ)(·|q)

[
1

β
∇ϕrϕ(a

′, q)

]]
=

1

β

(
E(q,a)∼p̂D

[∇ϕrϕ(a, q)]− Eq∼p̂q
Ea′∼πθ⋆(ϕ)(·|q)[∇ϕrϕ(a

′, q)]
)
.

This completes the derivation.
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A.3 DERIVATION OF REASONING REWARD GRADIENT

Proposition A.3. Let the reward be parameterized by a critic cϕ(ℓ | a, q) with labels ℓ ∈
{expert,policy} as rϕ(a, q) = cϕ(ℓ = expert | a, q). The gradient of the loss with respect to
critic parameters ϕ is:

∇ϕL =
1

β
Eq∼p̂q(·)

[
Ea∼p̂a|q(·|q)∪πθ(a|q)

[
Eℓ∼cϕ(·|a,q)

[
R(ℓ, a, q)∇ϕ log cϕ(ℓ | a, q)

]]]
,

where
R(ℓ, a, q) = 1ℓ is correct

Proof. In this section, we derive the specific form of the reward gradient when the reward is param-
eterized by a critic LLM cϕ. Recall from Eq. (A.2) that the gradient of the loss is:

∇ϕL(ϕ) =
1

β

(
E(q,a)∼p̂D

[∇ϕrϕ(a, q)]− Eq∼p̂q
Ea′∼πθ(·|q)[∇ϕrϕ(a

′, q)]
)
,

where we have approximated the optimal policy πθ⋆(ϕ) with the current policy πθ.

We parameterize the reward using the probability of the answer being expert-generated, as predicted
by a binary classifier (critic) cϕ(ℓ | a, q) where ℓ ∈ {expert, policy}:

rϕ(a, q) = cϕ(ℓ = expert | a, q).
Let pE = cϕ(ℓ = expert | a, q) and pP = cϕ(ℓ = policy | a, q) = 1 − pE . The gradient of the
reward with respect to ϕ is:

∇ϕrϕ(a, q) = ∇ϕpE .

We can express this gradient using the REINFORCE trick (log-derivative trick) over the binary
outcome ℓ. Consider the quantity:
Eℓ∼cϕ(·|a,q)[1ℓ=expert∇ϕ log cϕ(ℓ | a, q)] = 1expert=expertpE∇ϕ log pE + 1policy=expertpP∇ϕ log pP

= 1 · ∇ϕpE + 0

= ∇ϕpE .

Thus, we have the identity:

∇ϕrϕ(a, q) = Eℓ∼cϕ(·|a,q)

[
1ℓ=expert∇ϕ log cϕ(ℓ | a, q)

]
.

Substituting this identity back into the loss gradient expression:

1. Expert Term ((q, a) ∼ p̂D): The answers come from the expert distribution, so the correct label
is expert.

Ea∼p̂a|q [∇ϕrϕ(a, q)] = Ea∼p̂a|q

[
Eℓ∼cϕ

[
1ℓ=expert∇ϕ log cϕ(ℓ | a, q)

]]
.

This corresponds to a reward signal of +1 when ℓ = expert (correct) and 0 when ℓ = policy
(incorrect).

2. Policy Term (a ∼ πθ): Note the negative sign in the original gradient formula.
−Ea∼πθ

[∇ϕrϕ(a, q)] = −Ea∼πθ
[∇ϕpE ]

= Ea∼πθ
[∇ϕpP ] (since ∇ϕpE +∇ϕpP = 0)

= Ea∼πθ

[
Eℓ∼cϕ

[
1ℓ=policy∇ϕ log cϕ(ℓ | a, q)

]]
.

Here, the answers come from the policy, so the correct label is policy. This corresponds to a reward
signal of +1 when ℓ = policy (correct) and 0 when ℓ = expert (incorrect).

Combining both terms and grouping the expectations results in the final expression:

∇ϕL =
1

β
Eq∼p̂q

[
Ea∼p̂a|q∪πθ

[
Eℓ∼cϕ

[
R(ℓ, a, q)∇ϕ log cϕ(ℓ | a, q)

]]]
,

where the reward R(ℓ, a, q) aggregates the signs from both cases:
R(ℓ, a, q) = 1ℓ is correct

18



B FUTURE WORK

Stability in Long-form Generation. While RARO exhibits stable training dynamics on verifiable
tasks (see Figure 7), we observed some instability in long-form creative tasks. As shown in Figure 6,
during training, the policy and critic rewards could oscillate on the Poetry Writing task. Additionally,
the validation reward similarly oscillates despite an overall upward trend. This is reminiscent of the
instability observed in adversarial training for generative models, where powerful discriminators can
overfit to transient artifacts and induce non-stationary learning dynamics for the generator (Karras
et al., 2020). Future work will focus on developing techniques to stabilize this adversarial game
in subjective domains. It will also be important to understand when such oscillations reflect true
ambiguity in the task (e.g., multiple equally valid poetic styles) versus undesirable instability that
harms downstream user experience.

Figure 6: Poetry Writing (7B) Training Dynamics. During training, the policy and critic rewards
oscillate on the Poetry Writing task (left). The validation reward similarly oscillates despite an
overall upward trend (right).

Figure 7: Countdown and DeepMath (1.5B) Training Dynamics. Stable policy and critic rewards
during training for Countdown and DeepMath.

Figure 8: Sample Efficiency Comparison. Un-
der the same hyperparameters, our method is less
sample-efficient than RLVR on Countdown.

Sample Efficiency. While RARO achieves
strong final performance, it can be less sample-
efficient than RLVR when applied to verifiable
tasks. As shown in Figure 8, under identical hy-
perparameters on the Countdown task, RARO
requires more training iterations to reach per-
formance levels comparable to RLVR. This in-
efficiency stems from the added complexity of
jointly training a policy and critic in an adver-
sarial game, where the critic must first learn
to discriminate between policy and expert an-
swers before providing a useful training signal.
In contrast, RLVR benefits from immediate, or-
acle feedback. While this gap is unavoidable
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without access to a ground-truth verifier, future work could explore techniques to accelerate con-
vergence, such as curriculum learning and critic pretraining. A complementary direction is to the-
oretically characterize the sample complexity of our relativistic adversarial objective and identify
conditions under which we can provably bound the sample complexity of RARO.

Reward Interpretability. One motivation for our critic design is to produce natural-language
feedback that resembles human-written explanations. However, even when the critic outputs detailed
justifications, it remains challenging to extract a compact, stable, and explicitly human-interpretable
rubric that governs its behavior. In practice, the critic’s preferences may be entangled across many la-
tent factors, and at different training steps, the critic may prefer vastly different answers. Making the
critic truly interpretable therefore remains an open problem at the intersection of IRL, interpretabil-
ity, and value learning: promising directions include probing critic representations for concept-like
features and distilling the critic into simpler rubric models.

Scaling Reasoning. We aim to scale RARO to larger base models beyond 7B parameters and
beyond reasoning budget of 2048 tokens. Our results already indicate that increasing the reasoning
budget—via longer chains of thought at train time and test time—can yield substantial gains. Thus,
we are interested in exploring how scaling our method both in model size and reasoning budget can
lead to new emerging reasoning capabilities. Another important direction is to finetune models that
already exhibit strong reasoning capabilities on new tasks using RARO, so that they can rapidly
adapt their reasoning strategies without requiring task-specific verifiers or human preference labels.

Broadening Non-verifiable Domains. Finally, we plan to apply our approach to a wider range
of open-ended domains, such as front-end software development and long-form scientific writing,
where expert demonstrations are plentiful online but reliable verifiers are absent. If successful,
our approach could enable a new wave of practical LLM applications in these domains, unlocking
capabilities where training signals were previously scarce or unreliable. This would allow for the
deployment of robust reasoning systems in complex, real-world environments without the need for
expensive or impossible-to-design verifiers.
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C IMPLEMENTATION DETAILS

C.1 STABLE & EFFICIENT LEARNING

Here we describe the specific techniques that enable stable and efficient learning in RARO.

Shared LLM for Critic and Policy. While Section 3.3 provides a practical procedure for alternat-
ing updates of the policy (θ) and the critic model (ϕ), it requires training two reasoning LLMs and
thus incurs long, token-intensive rollouts for both. To reduce memory usage and potentially promote
generalization via shared representations, we ultimately use the same underlying LLM to role-play
as both the critic and the policy. Our ablations (see Appendix D.2) empirically support that using a
shared LLM for the critic and the policy improves performance.

Data Mixing. In addition, by sharing the same underlying LLM, we can substantially simplify
the concrete algorithm by mixing both the critic and policy rollouts in the same batch to compute
advantage and loss. This allows us to remove the need for alternating updates between the critic
and the policy and instead perform all updates in a single batch. Furthermore, this setup allows us
to easily control the “strength” of the policy and the critic by adjusting the weight of the critic and
policy loss in the combined objective.

Catastrophic Forgetting & Replay Buffer. In GAN training (Goodfellow et al., 2014), the dis-
criminator often suffers from catastrophic forgetting as the generator “cycles” among modes to fool
it (Thanh-Tung & Tran, 2020; Liang & Carin, 2018). We observe a similar problem in our setting,
where policy learns to cycle through a fixed set of strategies to “hack” the critic reward (see Ap-
pendix D.2). To mitigate this, we construct half of the critic prompts from a replay buffer of all past
policy rollouts, while the other half are sampled from the current batch of policy rollouts, ensuring
the critic is continually trained on every mode of “attack” discovered by the policy.

GRPO & Optimizations. Finally, we address several practical issues when implementing the con-
crete algorithm. When querying the critic to reward policy rollouts, occasional formatting or net-
working failures produce invalid rewards; we exclude the affected rollouts from the loss by masking
them during backpropagation. Following DAPO (Yu et al., 2025), we also apply over-length fil-
tering: any policy or critic rollout that exceeds a specified token-length threshold is excluded from
the objective computation. Finally, inspired by Dr. GRPO (Liu et al., 2025), we remove advantage
normalization and response-length normalization, which we found to introduce bias in our setting.

C.2 DATASETS

Countdown. We use a 24-style variant of the Countdown arithmetic puzzle, where the goal is to
combine four integers using basic arithmetic operations to obtain the target value 24. Instances are
synthetically generated via an exhaustive search over all possible combination of operands from
[1, 50] and operations from {+,−,×,÷}. The instances are then annotated with expert demonstra-
tions by GPT-5 (OpenAI, 2025), discarding instances that GPT-5 cannot solve. The resulting dataset
contains 131k total problems, from which we reserve 1024 tasks as a held-out test set. For this
task, the final answer is exactly verifiable via a straightforward expression computation, while the
underlying search over expressions is substantially more complex.

DeepMath. To evaluate our method on general math reasoning domain, we use the DeepMath
dataset (He et al., 2025), which consists of approximately 103k diverse and high-quality math prob-
lems with well-defined ground-truth answers. We utilize the full DeepMath-103K dataset for train-
ing and hold out 635 decontaminated problems as a test set. While the dataset provides example
reasoning traces beyond ground-truth answers, we discard them in all of our baselines for fairness
as our method is not designed to leverage them.

Poetry Writing. We construct our poetry writing task from a pre-collected corpus 1 of roughly
40k English-language poems sourced from Poetry Foundation 2. For each poem, we automatically

1 jnb666/poems 2 Poetry Foundation
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generate a short human-style prompt using GPT-5 and treat the original poem as the expert demon-
stration. Out of the 40k poems, we reserve 256 poems at random as our test set. Since poetry writing
does not admit an objective verifier, we evaluate RARO and baselines using GPT-5. Specifically, we
set up two evaluation metrics: scalar score and win-rate. The scalar score is measured by prompt-
ing GPT-5 to score the poem on a scale of 1-7 then normalized to 0-100, considering both prompt
adherence and literary quality. The win-rate is measured by supplying GPT-5 with both the policy
and expert poems and prompting it to determine which poem has higher overall quality.

C.3 IMPLEMENTATION STACK

Supervised methods (SFT and Rationalization). We train the SFT and Rationalization baselines
using Together AI’s managed fine-tuning service. While we monitor the validation loss during
training, we ultimately select the checkpoint for evaluation based on the best validation reward.

Iterative Direct Preference Optimization (DPO). Our iterative DPO baselines are implemented
using the trl library with PyTorch FSDP2 enabled to support efficient distributed training at all
model scales. For evaluation, we similarly select the checkpoint that maximizes the validation re-
ward. We repeat this process for 3 rounds.

RL-based methods (RL-Logit, RLVR, and RARO). All RL-based methods—RL-Logit, RLVR,
and RARO—are implemented on top of the verl framework (Sheng et al., 2024), a flexible and
efficient RL framework for LLM post-training. For RLVR, we use the default GRPO implementation
in verl without modification, with the reward given by binary ground-truth verifier. For RL-Logit,
we extend verl with a custom reward function that computes the scalar reward from the policy
logits on expert answers conditioned on the question and generated CoT tokens. To stabilize training
and avoid vanishing or exploding rewards, we use two reward variants:

• Log-probability variant: max(0.1× log πθ(a
⋆ | q, z),−1.0)

• Perplexity variant: 10.0× exp(mean(log πθ(a
⋆ | q, z)))

For RARO, we further modify the framework to (i) support rewards derived from critic rollouts
instead of direct verifiers, and (ii) implement a replay buffer and mixed data pipeline that interleaves
policy and critic rollouts for stable joint training of the policy and critic.

Compute setup. Unless otherwise specified, all non-RL methods (SFT, Rationalization, and DPO)
are trained on a single node with 8×H100 GPUs, regardless of model size or reasoning token budget.
RL-style methods are more compute intensive: we train RLVR, RL-Logit, and our method on 2
nodes with 8×H100 GPUs each for the 1.5B and 3B models, and on 4 such nodes (32 H100 GPUs
in total) for the 7B model.

C.4 HYPERPARAMETERS

We summarize the core optimization hyperparameters used for all methods in Tables 4 and 5. Unless
otherwise specified, these settings are shared across all tasks (Countdown, DeepMath, and Poetry
Writing) and model sizes described in Section 4.
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SFT & Rationalization
Hparam Value

Epochs 4
Batch size 8
Optim AdamW

LR 1× 10−5

Weight decay 0.02
Max grad. norm 1.0

LR Sched Cosine
Warmup ratio 0.05
Min LR ratio 0.03
Num cycles 0.5

Iterative DPO
Hparam Value

Epochs 1
Batch size 128
Optim AdamW

LR 1× 10−6

Weight decay 0.01
Max grad. norm 1.0

LR Sched Cosine
Warmup ratio 0.05
Min LR ratio 0.03
Num cycles 0.5

βDPO 0.1

RLVR & RL-Logit & RARO

Hparam Value

Rollout batch 1024
Rollout temp. 1.0
Group size 16
Optim AdamW

LR 1× 10−6

Weight decay 0.01
Max grad. norm 1.0

Train batch 256
Clip ratio [0.2, 0.28]
KL coeff. 10−3

Table 4: Shared hyperparameters across ours and baselines. SFT and Rationalization share the
same AdamW optimizer setup, while DPO uses a different configuration. All three share the same
cosine learning-rate schedule. RLVR, RL-Logit, and RARO share the same underlying GRPO setup
as described in Section 3.

RARO (Countdown)

Hparam Value

τpol 0.6
τcrit 0.55
λpol 1/2
λcrit 1/2

RARO (DeepMath)

Hparam Value

τpol 0.6
τcrit 0.55
λpol 1/9
λcrit 8/9

RARO (Poetry Writing)

Hparam Value

τpol 0.6
τcrit 0.5
λpol 1/3
λcrit 2/3

Table 5: Hyperparameters for our method. We use the relativistic critic and shared-LLM training
setup described in Section 3, with tie rewards (τpol, τcrit) and loss weights (λpol, λcrit) chosen to
balance exploration and critic supervision for each task.

C.5 TEST-TIME SCALING ALGORITHM

Here, we provide additional details for our Test-Time Scaling (TTS) algorithm. As described in
Algorithm 3, we implement TTS via a single-elimination tournament. Given a pool of candidate
responses Y generated by the policy, we iteratively pair them and use the learned critic Cϕ to select
the better response. To mitigate the variance in the critic’s generated reasoning, for each pair of
responses (yA, yB), we sample the critic K times and use a majority vote to determine the winner.
We use K = 4 for all our TTS experiments. Tables 12 and 14 present the full results of RARO with
TTS compared to baselines with identical TTS settings.

Algorithm 3 Single-Elimination Tournament for Test-Time Scaling

Require: Prompt x, Candidates Y , Critic Cϕ, Votes K
Ensure: Best response y∗

1: while |Y| > 1 do
2: Ynext ← ∅
3: for i = 1 to |Y| step 2 do
4: if i == |Y| then Ynext.append(Y[i]); continue
5: end if
6: yA, yB ← Y[i],Y[i+ 1]

7: vA ←
∑K

k=1 I(Cϕ(·|x, yA, yB) favors A)
8: Ynext.append(vA > K/2 ? yA : yB)
9: end for

10: Y ← Ynext
11: end while
12: return Y[1]
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D ADDITIONAL RESULTS

D.1 MODEL SIZE SCALING ON COUNTDOWN

Method 1.5B 3B
accuracy (%) ↑ accuracy (%) ↑

RLVR 57.7± 1.6 53.5± 1.6
RARO 54.4± 1.5 49.7± 1.6

Table 6: Model Size Scaling on Countdown.

We systematically study the effect of scaling model
size on the performance on Countdown. In addition
to the main results at 1.5B reported in Section 5, we
conducted additional experiments at 3B. The verifi-
able baseline, RLVR, exhibits a performance regres-
sion, dropping from 57.7% at 1.5B to 53.5% at 3B
(Figure 9). Similarly, we observe that the perfor-
mance of RARO also degrades from 54.4% to 49.7% at 3B. Furthermore, as illustrated in Figure 10,
after initial improvements, both RLVR and RARO performance actively decreases as training pro-
gresses. While we do not have a definitive explanation, we hypothesize that larger models may be
more prone to the training-inference log-probability mismatch problem (Yao et al., 2025), leading
to degradation when scaling model capacity. These results indicate that RARO does not inherently
contribute to the performance plateau; rather, it is a systematic problem that we observe with RLVR
as well.

Figure 9: RLVR with a 3B model achieves
lower performance than with a 1.5B model.

Figure 10: RARO similarly degrades from 1.5B
to 3B.

D.2 ABLATION STUDIES

Method DeepMath 1.5B
accuracy (%) ↑

w/o critic reasoning 35.9± 1.9
w/o relativistic critic 36.9± 1.9
w/o tie option 38.6± 1.9
w/o replay buffer 35.4± 1.8
w/o shared LLM 39.4± 1.9

RARO 41.3± 1.9

Table 7: Ablation results on DeepMath
1.5B. Removing any component leads to per-
formance degradation.

We conduct Leave-One-Out (LOO) ablations on the
DeepMath dataset at 1.5B to isolate the contribu-
tion of each component in our framework. As sum-
marized in Table 7, removing any single compo-
nent—the shared LLM, relativistic critic, critic rea-
soning, tie option, or replay buffer—results in a sig-
nificant performance degradation compared to our
full method (41.3%). This uniform drop confirms
that all designed mechanisms are essential for the
method’s overall effectiveness.

Beyond aggregate metrics, we observe distinct fail-
ure modes associated with particular missing com-
ponents, illustrated by the training dynamics.

Necessity of Critic Reasoning. RARO relies on the critic performing explicit CoT reasoning be-
fore providing a final judgment. When this reasoning step is removed, the critic loses its capacity to
make meaningful distinctions between responses. As shown in Figure 11, instead of providing con-
sistent signals, it collapses into a degenerate state, consistently outputting a tie response regardless
of the quality of the policy or expert answer. This failure prevents the policy from receiving useful
reward signals, stalling learning.
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Figure 11: No Critic Reasoning. Without critic
reasoning, the critic always outputs tie, pre-
venting the policy from learning.

Figure 12: Tie Distribution. The critic learns to
output tie stably for around 70% of the outputs
after around 150 training steps.

Importance of Relativistic Setup. The relativistic critic evaluates the policy’s answer and the ex-
pert’s answer in a pairwise fashion rather than in isolation. Without this relativistic setup, the reward
signal perceived by the policy exhibits significantly higher variance during training, as illustrated in
Figure 13. This instability suggests that the reference answer serves as a crucial anchor enabling
stable optimization. We further demonstrate that the critic successfully learns to utilize the tie
option defined in our relativistic setup. As shown in Figure 12, the critic learns to output tie stably
for around 70% of the outputs after around 150 training steps. In addition, as shown in Table 7,
without the tie option, the final policy’s performance drops from 41.3% to 38.6%, indicating that
the addition of the tie option contributes to the final policy performance.

Role of the Replay Buffer. Finally, the replay buffer is critical for preventing cycling dynamics.
As shown in Figure 14, removing the replay buffer causes the critic’s training reward to oscillate
severely after around 300 training steps. This suggests that the policy learns to exploit the critic’s
forgetfulness by cycling through adversarial patterns that temporarily fool the critic. This interaction
eventually destabilizes the critic completely, leading it to default to a tie output, effectively halting
progress.

Figure 13: No Relativistic Setup. Without the
relativistic setup, the policy reward during train-
ing exhibits high variance.

Figure 14: No Replay Buffer. Without a replay
buffer, the training suffers from severe oscilla-
tions and eventual collapse.
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E ADDITIONAL TABLES & FIGURES

Budget 256 512 1024 2048 4096

SFT 40.7± 1.6 40.7± 1.6 40.7± 1.6 40.7± 1.6 40.7± 1.6
RARO 33.1± 1.5 40.9± 1.5 51.2± 1.6 54.4± 1.5 61.3± 1.5

Table 8: Tabular data for Countdown reasoning budget scaling results. Notably, result reported at a
budget of 4096 tokens is derived from extrapolating test-time reasoning budget of the model trained
at 2048 tokens.

N 1.5B 3B 7B

1 41.6± 1.9 47.5± 2.0 57.8± 1.9
2 45.0± 2.0 51.7± 2.0 61.2± 1.9
4 45.1± 2.0 54.2± 2.0 63.4± 2.0
8 46.2± 2.0 54.8± 2.0 65.3± 1.9

16 53.6± 2.3 57.9± 2.0 68.4± 2.0

Table 9: Tabular data for RARO’s TTS scaling
results on DeepMath.

N 1.5B 3B 7B

1 50.9± 1.9 55.8± 2.0 66.2± 2.0
2 55.5± 1.9 63.4± 1.9 68.9± 1.9
4 59.6± 1.9 68.6± 1.8 69.8± 1.9
8 64.4± 1.9 72.5± 1.7 71.5± 1.9
16 66.1± 1.8 75.8± 1.7 76.9± 1.9

Table 10: Tabular data for the RLVR’s TTS scal-
ing results on DeepMath.

Method Countdown
accuracy (%) ↑

RLVR (with verifier) 57.7± 1.6

Base 2.0± 0.4
SFT 40.7± 1.6
Rationalization 12.5± 1.0
DPO

Round 1 40.4± 1.5
Round 2 32.5± 1.4
Round 3 32.2± 1.4

RL-Logits 2.2± 0.4
RARO 54.4± 1.5

Table 11: Complete results for Countdown at
1.5B.

Method Countdown
accuracy (%) ↑

RLVR (with verifier) 71.0± 1.5

Base 4.2± 0.6
SFT 42.4± 1.6
Rationalization 11.2± 1.0
DPO

Round 1 43.1± 1.6
Round 2 34.8± 1.5
Round 3 31.6± 1.4

RL-Logits 3.1± 0.5
RARO 75.0± 1.4

Table 12: Complete results for Countdown at
1.5B with TTS.
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Method DeepMath Poetry Poetry
accuracy (%) ↑ score (0-100) ↑ win-rate (%) ↑

(vs. expert)

1.5B
RLVR (with verifier) 50.9± 1.9 N/A N/A

Base 29.6± 1.9 35.0± 0.9 0.0± 0.0
SFT 35.7± 1.8 53.7± 1.0 2.3± 1.0
Rationalization 34.5± 2.0 35.6± 1.6 0.8± 0.5
DPO

Round 1 29.9± 1.8 48.6± 0.9 0.0± 0.0
Round 2 33.0± 1.9 10.3± 0.5 0.0± 0.0
Round 3 29.6± 1.8 29.3± 1.0 0.0± 0.0

RL-Logits 37.7± 1.9 36.4± 0.7 0.0± 0.0
RARO 41.3± 1.9 67.8± 0.8 7.8± 1.7

3B
RLVR (with verifier) 55.8± 2.0 N/A N/A

Base 39.4± 1.9 46.5± 0.9 0.0± 0.0
SFT 39.0± 1.9 57.4± 1.0 2.3± 1.0
Rationalization 32.3± 1.9 30.8± 1.9 0.4± 0.4
DPO

Round 1 33.2± 1.8 58.7± 0.9 1.2± 0.7
Round 2 34.2± 1.9 57.1± 1.0 0.0± 0.0
Round 3 31.9± 1.8 69.8± 0.8 6.6± 1.5

RL-Logits 43.1± 2.0 46.9± 0.8 0.4± 0.4
RARO 49.1± 1.9 71.9± 0.8 17.2± 2.4

7B
RLVR (with verifier) 66.2± 1.9 N/A N/A

Base 44.2± 2.1 54.0± 0.9 1.2± 0.7
SFT 42.3± 1.9 65.4± 1.0 5.9± 1.4
Rationalization 48.6± 1.9 57.7± 1.2 5.1± 1.3
DPO

Round 1 36.9± 2.0 61.6± 0.9 3.5± 1.1
Round 2 36.5± 1.9 66.5± 0.9 5.1± 1.4
Round 3 32.8± 1.9 54.1± 1.6 3.9± 1.2

RL-Logits 49.3± 2.0 55.4± 0.8 3.9± 1.2
RARO 57.5± 2.0 77.3± 0.8 25.0± 2.6

Table 13: Main results for DeepMath and Poetry. We report the average and standard deviation
of evaluation metrics for DeepMath and Poetry Writing across model scales with an reasoning token
budget of 2048.
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Method DeepMath Poetry Poetry
accuracy (%) ↑ score (0-100) ↑ win-rate (%) ↑

(vs. expert)

1.5B
RLVR (with verifier) 59.7± 2.3 N/A N/A

Base 26.9± 6.2 36.4± 0.7 0.0± 0.0
SFT 37.3± 1.9 55.1± 1.1 1.6± 0.8
Rationalization 42.6± 2.8 41.2± 1.5 0.0± 0.0
DPO

Round 1 31.7± 1.9 49.9± 0.9 0.0± 0.0
Round 2 34.0± 1.9 9.5± 0.4 0.0± 0.0
Round 3 30.4± 1.9 30.1± 1.1 0.0± 0.0

RL-Logits 41.3± 2.0 38.0± 0.7 0.0± 0.0
RARO 53.6± 2.3 67.7± 0.8 8.2± 1.8

3B
RLVR (with verifier) 67.5± 2.1 N/A N/A

Base 49.7± 2.9 50.8± 0.7 0.4± 0.4
SFT 39.0± 2.0 57.2± 1.0 1.3± 0.7
Rationalization 42.7± 2.6 50.2± 1.4 2.0± 0.8
DPO

Round 1 34.6± 2.0 57.5± 0.9 2.1± 0.9
Round 2 35.7± 1.9 55.8± 0.9 1.6± 0.7
Round 3 34.2± 1.9 70.3± 0.8 9.0± 1.8

RL-Logits 44.0± 2.1 51.1± 0.7 0.4± 0.4
RARO 57.9± 2.0 74.1± 0.8 21.9± 2.6

7B
RLVR (with verifier) 76.9± 1.9 N/A N/A

Base 50.8± 2.6 58.8± 0.6 2.3± 0.9
SFT 42.1± 2.0 63.9± 0.9 4.7± 1.4
Rationalization 58.4± 2.3 55.1± 1.2 2.0± 0.9
DPO

Round 1 42.9± 2.3 60.8± 0.9 3.5± 1.1
Round 2 36.8± 1.9 67.2± 0.9 4.3± 1.3
Round 3 42.9± 2.3 53.7± 1.6 2.7± 1.0

RL-Logits 51.0± 2.1 60.9± 0.6 1.6± 0.8
RARO 68.4± 2.0 79.2± 0.8 25.0± 2.7

Table 14: Main results for DeepMath and Poetry with TTS. Comparison of RARO against base-
lines with identical Test-Time Scaling settings.
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Countdown
Use the four numbers 19, 11, 48, and 6 to create an expression that equals 24.

Remember:
• Use each number exactly once
• You can only use +, -, *, / and parentheses
• The expression must be valid Python code that evaluates to 24

Think through different combinations and show your reasoning. Once you find a valid solution,
put your final answer inside \boxed{} tags.

For example, if the solution is (8 - 2) * 4 + 0, you would write: \boxed{(8 - 2) * 4 + 0}

The expression inside \boxed{} must be directly evaluable in Python and should equal 24.

RARO Policy

<think>
To find an expression using the four numbers 19, 11, 48, and 6 that equals 24, let’s try different
combinations.

1. (48 - 11) * (19 - 6) = 37 * 13 = 481 (too high)
2. (48 - 19) * (11 - 6) = 29 * 5 = 145 (too high)
3. (48 * 11) / (19 - 6) = 528 / 13 = 40.615 (too high)
4. 48 / (19 - 11) + 6 = 48 / 8 + 6 = 6 + 6 = 12 (too low)
5. (48 - 11) * (19 / 6) = 37 * 3.167 = 115.167 (too high)
6. (48 / (19 - 11)) * 6 = (48 / 8) * 6 = 6 * 6 = 36 (too low)
7. (48 - 11) + (19 - 6) = 37 + 13 = 50 (too low)
8. 48 / (19 - 6) + 11 = 48 / 13 + 11 = 3.769 + 11 = 14.769 (too low)
9. 11 * (48 / (19 - 6)) = 11 * (48 / 13) = 11 * 3.769 = 41.459 (too low)
10. (48 / 6) + (19 - 11) = 8 + 8 = 16 (too low)
11. 19 - (48 / (11 - 6)) = 19 - (48 / 5) = 19 - 9.6 = 9.4 (too low)
12. (48 / (19 - 6)) + 11 = (48 / 13) + 11 = 3.769 + 11 = 14.769 (too low)
13. (48 - 11) + (19 - 6) = 37 + 13 = 50 (too low)
14. 19 - (48 / (11 + 6)) = 19 - (48 / 17) = 19 - 2.764 = 16.236 (too low)
15. (19 - 11) * (48 / 6) = 8 * 8 = 64 (too high)
16. (19 + 11) - (48 / 6) = 30 - 8 = 22 (too low)
17. 48 / (11 - (19 - 6)) = 48 / (11 - 13) = 48 / -2 = -24 (too low)
18. (48 / 6) + (19 - 11) = 8 + 8 = 16 (too low)
19. (48 / (19 - 6)) + 11 = (48 / 13) + 11 = 3.769 + 11 = 14.769 (too low)
20. 48 / (19 - (11 + 6)) = 48 / (19 - 17) = 48 / 2 = 24 (correct)

The final answer is: \boxed{48 / (19 - (11 + 6))}
</think>
48/(19− (11 + 6))

Figure 15: Full qualitative example for the RARO policy for Countdown at 1.5B.
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DeepMath

Find the equation of the normal line to the curve (x2 + y2)3/2 = 2xy at the point
(

1√
2
, 1√

2

)
.

RARO Policy

<think>
To find the equation of the normal line to the curve (x2 + y2)3/2 = 2xy at the point

(
1√
2
, 1√

2

)
,

we need to follow these steps:

1. Differentiate the curve implicitly to find the slope of the tangent line at the given point.
2. Use the slope of the tangent line to find the slope of the normal line.
3. Write the equation of the normal line using the point-slope form.

Let’s start with implicit differentiation. Given the equation:

(x2 + y2)3/2 = 2xy

Differentiate both sides with respect to x:

d

dx

(
(x2 + y2)3/2

)
=

d

dx
(2xy)

Using the chain rule on the left side:

3

2
(x2 + y2)1/2 · d

dx
(x2 + y2) = 2y + 2x

dy

dx

Now, differentiate x2 + y2 with respect to x:

3

2
(x2 + y2)1/2(2x+ 2y

dy

dx
) = 2y + 2x

dy

dx

Simplify the left side:

3(x2 + y2)1/2(x+ y
dy

dx
) = 2y + 2x

dy

dx

Distribute and collect terms involving dy
dx on one side:

3(x2 + y2)1/2x+ 3(x2 + y2)1/2y
dy

dx
= 2y + 2x

dy

dx

3(x2 + y2)1/2y
dy

dx
− 2x

dy

dx
= 2y − 3(x2 + y2)1/2x

Factor out dy
dx on the left side:

dy

dx

(
3(x2 + y2)1/2y − 2x

)
= 2y − 3(x2 + y2)1/2x

Solve for dy
dx :

dy

dx
=

2y − 3(x2 + y2)1/2x

3(x2 + y2)1/2y − 2x

Next, we need to find the slope of the tangent line at the point
(

1√
2
, 1√

2

)
: Substitute x = 1√

2
and

y = 1√
2

into the derivative:

dy

dx
=

2
(

1√
2

)
− 3

(((
1√
2

)2
+
(

1√
2

)2))1/2 (
1√
2

)
3

(((
1√
2

)2
+
(

1√
2

)2))1/2 (
1√
2

)
− 2

(
1√
2

)
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Simplify the terms inside:

x2 + y2 =

(
1√
2

)2

+

(
1√
2

)2

=
1

2
+

1

2
= 1

So:

dy

dx
=

2
(

1√
2

)
− 3 (1)

1/2
(

1√
2

)
3 (1)

1/2
(

1√
2

)
− 2

(
1√
2

) =

2√
2
− 3√

2
3√
2
− 2√

2

=

2−3√
2

3−2√
2

=
−1
1

= −1

The slope of the tangent line at
(

1√
2
, 1√

2

)
is −1. The slope of the normal line is the negative

reciprocal of −1, which is 1.
Now, use the point-slope form of the equation of a line y−y1 = m(x−x1), where m is the slope
and (x1, y1) is the point:

y − 1√
2
= 1

(
x− 1√

2

)
Simplify:

y − 1√
2
= x− 1√

2
y = x

Thus, the equation of the normal line is:

y = x

</think>
y = x

Figure 16: Full qualitative example for the RARO policy for DeepMath at 7B.
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Poetry Writing

a poem about a child’s fragmented memory of a father leaving, told in intimate, sensory free verse

Please carefully think about how to create an artistic poem while adhering to the prompt, and
please enclose the final version of your poem (along with the title) in <poem></poem> tags

RARO Policy

<think>
To create such a poem, I’d:
1. Focus on sensory details that might linger in a child’s memory.
2. Use free verse, with unrhymed, natural cadences to convey the fragmented and stream-of-
consciousness nature of recollections.
3. Include elements that represent the end of a relationship, like a suitcase, luggage, or a car,
without explicitly stating the scenario.
4. Incorporate physical and emotional sensations that capture the essence of the scene.
</think>
<poem>
One Memory of My Father Leaving

There was the sound
of a suitcase rolling
on the hallway carpet;

the thud of it
being set down in the sunroom
and a shadow of it carried away

by someone going somewhere.

It smelled of leather, or brown soap,
or something carried in it
-like salt air, or bare shoulders,

or a man thinking
and trying not to cry.
</poem>

Figure 17: Full qualitative example for the RARO policy for Poetry Writing at 7B.
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Countdown
You are an expert mathematics critic whose goal is to compare two answers to a math problem
and determine which one is correct.
. . .
Question:
<question>
Use the four numbers 20, 45, 10, and 23 to create an expression that equals 24.
. . .
</question>

Answer 1:
<answer 1>
(45− 23) + (20/10)

</answer 1>

Answer 2:
<answer 2>
(20 + 45 ∗ 2)− 23

</answer 2>

RARO Critic
<think>
To determine which answer is correct, let’s carefully analyze both solutions.
For Answer 1: (45− 23) + (20/10)

Let’s follow these steps:
1. Perform the subtraction inside the first set of parentheses: 45− 23 = 22
2. Perform the division inside the second set of parentheses: 20/10 = 2
3. Add the results: 22 + 2 = 24

Answer 1 is correct.

For Answer 2: (20 + 45 ∗ 2)− 23

Let’s follow these steps:
1. Perform the multiplication inside the parentheses: 45× 2 = 90
2. Add the numbers inside the parentheses: 20 + 90 = 110
3. Subtract 23: 110− 23 = 87

Answer 2 is incorrect.
</think>
Answer 1

Figure 18: Qualitative example of the RARO critic for Countdown at 1.5B.
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DeepMath

You are an expert mathematics critic whose goal is to compare two answers to a math problem
and determine which one is correct.
. . .
Question:
<question>
Evaluate the double integral

∫ ∫
R
x2 + y2 dx dy where R is the region bounded by the circle

x2 + y2 = 4 and the lines y = 0 and y = x.
</question>

Answer 1:
<answer 1>

−8π

5
</answer 1>

Answer 2:
<answer 2>
π
</answer 2>

RARO Critic
<think>
Let’s evaluate the double integral

∫∫
R
x2 + y2 dx dy where R is the region bounded by the circle

x2 + y2 = 4 and the lines y = 0 and y = x.

To solve the integral, we can convert to polar coordinates. The circle x2 + y2 = 4 has a
radius of 2, so in polar coordinates, the region R is described by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ π

4

(considering the quadrant where the region is). The integrand in polar coordinates is x2+y2 = r2.

The Jacobian of the transformation from Cartesian to polar coordinates is r, so the integral be-
comes: ∫∫

R

x2 + y2 dx dy =

∫ π
4

0

∫ 2

0

r2 · r dr dθ =

∫ π
4

0

∫ 2

0

r3 dr dθ.

First, we integrate with respect to r:∫ 2

0

r3 dr =

[
r4

4

]2
0

=
24

4
− 04

4
=

16

4
= 4.

Next, we integrate with respect to θ:∫ π
4

0

4 dθ = 4 [θ]

π

4
0 = 4

(π
4
− 0
)
= π.

Therefore, the value of the double integral is π.

So, the answer is π .
</think>
Answer 2

Figure 19: Qualitative example of the RARO critic for DeepMath at 7B.
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Poetry Writing

You are an expert poetry critic and professor of creative writing. Your task is to compare two
poems that were both written in response to the same prompt.
. . .
Prompt:
<prompt>
Write a reflective free-verse poem about remembering the dead and how death feels sudden
whether in disasters like the Titanic or in ordinary life.
</prompt>

Poem 1:
<poem 1>
On Missing Someone in a Disaster

. . .
</poem 1>

Poem 2:
<poem 2>
The Titanic

. . .
</poem 2>

RARO Critic
<think>
To evaluate these poems, we need to consider each dimension to grasp the key elements and
compare them effectively. The prompt is to reflect on the experience of remembering the dead
and perceiving death in contrast to major disasters like the Titanic. This prompts us to focus on
both human and naturalistic death, the impact of memory, and the honor and acceptance of grief.

Both poems satisfy the prompt by offering reflections on the human condition related to death.
They both focus on encounters with those who were absent in disasters and how death intrudes
on life. However, Poem 1 uses a speculative metaphor (not “The Titanic,” but an abstractus
timeframe-filled poem) to avoid repetition of a specific disaster. Poem 2, on the other hand,
employs detailed imagery and simile relating directly to the well-known disaster. Both require
the same thoughtful consideration of the prompt’s themes.

The differences in focus and tone help to distinguish these views. While a survivalist approach
might imply a romantic view of hardiness and mortality, this perspective doesn’t rule out
emotional reflection. Both poems visit the liminal space of collective memory and societal
assumptions about mourning, driven by personal memory and regret.

In terms of literary merit and craftsmanship, both poems employ powerful strategies: evocative
language, specific details from natural or social settings (both following the prompt well).
However, the execution and spatial division among lines in Poem 2 yields a more static and
inventive feeling, without many explicit sensory references or rhyme schemes.

Poem 1 then suffers from non-explicit time markers and symbols to depict the changing circum-
stances of disaster and loss. Unlike Poem 2, which doesn’t explicitly use tragedy but rather deals
subjectively with grief and loss, Poem 1’s merging of analogies to the tragedy and reality illus-
trates the suspension and celebration of the poem’s thorough reflection on these serious ideas.
</think>
Final Judgment:
Poem 2

Figure 20: Qualitative example of the RARO critic for Poetry Writing at 7B.
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