
要

来自论文《嵌套学习：深度学习架构的错觉》，作者：Ali Behrouz、Meisam Razaviyayn、Peilin

Zhong 和 Vahab Mirrokni — Google Research, NeurIPS 2025

理解架构，我们应该从最初开始。你知道语言模型有什么问题吗？它们有健忘症。不

是那种忘记过去的那种。它们记得自己的预训练得很好。这是一种特定的健忘症，称

为顺行性遗忘症，在这种遗忘症中，条件之前的长期记忆是完整的，它们体验当前时刻的能力

是完美的。但是它们无法将任何东西从短期记忆转移到长期记忆。30 秒后，刚刚发生的事情就

消失了。它们每次都以没有通往明天的桥梁，第一次体验现在。

这正是当前 LLMs 发生的情况。

它们有两种类型的知识：

持久知识存储在 MLP 模块和投影权重中。从预训练开始

仅当 token 处于注意力窗口中时存在的上下文知识

当上下文消失时，这些知识也随之消失。没有机制将信息从临时（注意力）转移到永久

（MLP）。

HOPE：一个自引用模块

arjun

https://x.com/arjunkocher

这一认识是本文的起点。

论文提出了三个核心贡献来解决这个问题：

1. 表达性优化器：证明基于梯度的优化器如 Adam 和带有动量的 SGD 实际上是压缩梯度信息的

关联记忆模块

2. 自修改学习模块：一种序列模型，通过学习自己的更新算法来学习如何修改自身

3. 连续体记忆系统：一种新的公式，超越了传统的“长期/短期记忆”二元论

在构建任何事物之前，我们需要理解神经网络中记忆的实际含义。事实证明，有一个美丽的统

一框架：联想记忆。

什么是联想记忆？它是学习事件之间的映射。当你学习一个人的名字时，你正在将他们的脸映

射到他们的名字上。键到值。事件到事件。

形式上，我们可以将其写为一个优化问题：

找到最佳记忆函数 M，将键（如人脸）映射到值（如姓名），并使误差最小。

我们有键 ，值 ，以及一个将键映射到值的记忆函数 。损失 衡量这种映射的好坏。

我们所知的多数架构都可以重新表述为关联记忆。目标函数的选择和优化过程决定了你将得到

什么样的架构。

示例 1：线性注意力

一切皆是联想记忆

M =∗ arg ​ (M(K);V)
M

min L
~

K V M L
~

说 只是一个矩阵（一个线性层）。将目标设置为点积相似度：

衡量相似度：记忆的输出与值越一致，效果越好。

如果你用梯度下降来优化这个目标，你会得到线性注意力。递归更新变为：

每一步，将当前键和值之间的关联添加到记忆中。简单的累积。

线性注意力机制本质上就是基于点积目标的梯度下降。

示例 2：Delta 规则

现在将目标函数改为 L2 回归损失：

均方误差：记忆的预测与实际值相差多远？越小越好。

使用梯度下降优化，你得到 delta 规则：

M

=L
~

−⟨MK,V ⟩⊤

M ​ =t M ​ +t−1 v ​k ​t t
⊤

=L
~

∥MK−V∥ ​2
2

M ​ =t M ​ −t−1 η ​(M ​k ​ −t t−1 t v ​)k ​t t
⊤

根据其预测误差修正记忆。如果错误，则按错误程度成比例调整。

不同的目标，不同的架构。但底层结构相同。通过梯度下降优化的联想记忆。

从深度学习的角度来看，我们看到的是解决方案，最终的更新规则。但从嵌套学习的角度来

看，我们看到的是内部学习过程。我们看到架构内部存在一个优化问题，而我们正通过某种优

化器来解决这个问题。

我们可以通过选择目标或优化器来改进架构，这些选择成为我们可以操纵的设计决策。

取一个简单的 MLP 并用梯度下降进行训练。更新规则是：

向误差梯度的反方向移动权重。就像滚下山找到最低点一样。

使用链式法则：

更新 = 学习率 × 误差信号 × 输入。外积将输入与输出连接起来。

我们可以将其重写为：

梯度下降也是一种联想记忆

W ​ =t+1 W ​ −t η ​∇ ​L(W ​;x ​)t W t t

W ​ =t+1 W ​ −t η ​∇ ​L(W ​;x ​) ⊗t y ​t t t x ​t

平衡两个目标：跟随梯度 AND 不要从当前权重变化太多。

我们试图将输入 映射到梯度（或"误差信号"） ，使用点积相似度来衡量质量。这看起

来就像线性注意力！

但有一个关键区别，在线性注意力中，键和值与记忆状态 无关。你可以预先计算它们。但在

这里，值即梯度依赖于当前状态 。

记忆会生成它自己的学习目标。这被称为自指模型。该模型通过生成自己的值来控制自己的学

习过程。

通过在自生成的目标与输入之间添加连接来更新权重。

其中

记忆体生成自己的学习目标！v 是模型认为下一个应该学习的内容。

W =t+1 arg ​⟨Wx ​, ∇ ​L(W ​;x ​)⟩ +
W

min t y ​t t t ​∥W −
2η ​t

1
W ​∥ ​t 2

2

xt ∇ ​Ly ​t

M

W ​t

自指学习

W ​ =t+1 W ​ +t η ​v ​ ⊗t+1 t x ​t

v ​ =t f ​(x ​) =W ​t t −∇ ​L(W ​;x ​)y ​t t t

在每一步中， 都是由记忆 自身生成的。记忆根据它当前所在的位置来决定下一步要学习

什么。这比简单的线性注意力机制要强大得多，在简单的线性注意力机制中，你只是将预先给

定的键映射到预先给定的值。

梯度下降是一种联想记忆，但它是一种自我指涉的联想记忆。它不是在学习如何映射，而是在

学习如何生成用于映射的正确事物，然后学习这种映射。

给梯度下降添加动量：

权重通过动量量改变，累积过去的梯度信息。

动量 = （保留部分上一次动量）+ （添加新的梯度）。就像一个具有惯性的滚动的球。

动量在做什么？它是梯度的一种关联记忆。

到目前为止，所描述的记忆都是针对令牌的，它们将输入令牌映射到输出值。但动量作用于一

个不同的上下文，即梯度。它将过去的梯度压缩到其参数中。

并且我们可以将动量表述为解决它自己的优化问题：

v ​t W ​t

动量：梯度记忆

W ​ =t+1 W ​ +t m ​t+1

m ​ =t+1 α ​m ​ −t+1 t η ​∇ ​L(W ​;x ​)t+1 W t t+1

这

动量本身也在解决一个优化问题：将过去的梯度压缩到一个有用的方向上。

使用梯度下降进行优化，你将得到动量更新。

当你训练神经网络时，架构是一个优化问题（将标记映射到输出的关联记忆）。优化器也是一个

优化问题（将梯度映射到权重更新）

它们是同一回事，只是作用于不同的上下文。架构作用于标记。优化器作用于梯度，它们是相

互关联的。架构为优化器生成上下文。优化器看到的梯度？这些来自架构。所以你不能独立设

计它们，它们是同一个系统的一部分。

是嵌套学习：将机器学习模型视为一组嵌套（或并行）的优化问题，每个问题都

有其自身的上下文流程。

这种相互关联具有实际影响。如果你为一个组件选择了一个糟糕的优化问题，它可能会与其他

组件相矛盾，导致整个设计崩溃。不同层级可能会相互冲突。理解深度学习架构意味着将一切

视为一个相互关联的系统，其中每个组件的上下文都依赖于其他组件。

这也是为什么你不能简单地说“我已经设计了 Adam，让我们用它来训练所有架构。”Transformer

生成的梯度与 MLP 生成的梯度从根本上不同。Transformer 的 Hessian 要复杂得多。优化器需要匹

配它所生成的上下文架构。

​ −⟨m, ∇ ​L(W ​;x ​)⟩
m

min W t t

嵌套优化问题

隐藏维度，频率

在嵌套学习视角中，每个组件都有一个更新频率，即它变化的频率。

在 Transformer 中，注意力机制每个 token 都会更新。频率 = （非参数化，每次重新计算）。

MLP 模块在预训练期间更新，然后冻结。预训练后频率为 0。

预训练本身就是一种情境学习，只是其情境包含数十亿或数万亿个 token。我们将整个预训练数

据集压缩到持久组件（MLPs、投影）中。然后注意力机制提供了另一种形式的情境学习，但其

情境长度要短得多，只有数千个 token。

两个极端情况。中间什么都没有。为什么不能有很多中间状态呢？

但人脑并不这样工作。脑电波在多种频率下发生。伽马波（30-150 赫兹）用于感觉处理，贝塔

波（13-30 赫兹）用于主动思考，Theta/德尔塔波（0.5-8 赫兹）用于记忆巩固。

多重时间尺度。多重频率。统一且可复用的结构，结合大脑中的多时间尺度更新，是人类持续

学习的关键要素。嵌套学习允许每个组件进行多时间尺度更新，同时揭示出像 Transformer 这样

著名的架构实际上是具有不同频率更新的线性层。这就是我们需要构建的。

与其只有一个 MLP 模块（频率 0），不如让多个 MLP 模块以不同的频率更新：

链式 MLP 模块，每个模块以不同的速度更新。快速→中等→慢速，类似于脑电波。

每个 模块拥有自己的块大小 ，该大小决定了其更新频率。以下是关键更新规则：

∞

连续体记忆系统：遗忘的频谱

y ​ =t MLP (MLP (⋯ MLP (x ​)))(f ​)k (f ​)k−1 (f ​)1
t

MLP(f ​)ℓ C(ℓ)

参数仅在块边界处更新。快速内存每 512 个标记更新一次，慢速内存每 8192 个标记更新一次。

让我来解读一下这段话的意思。在级别 上的参数 仅在 能被块大小 整除时更新。当

这种情况发生时，它们会累积过去 个 token 的所有梯度（或者更一般地说，误差信号

 ），并一次性应用它们。否则，更新为零，参数冻结。

这会给你带来什么？假设你有三个级别：

级别 1： 个 token（高频，适应快，遗忘快）

第二级： 个 token（中等频率）

第三级： 个 token（低频率，最持久）

当你处理一个长序列时；第一级每 512 个 token 更新一次。它能看到局部模式，适应快，但遗忘

也快。第二级每 2048 个 token 更新一次。它在一个更长的窗口中积累信息，更稳定，反应更

慢。第三级每 8192 个 token 更新一次。它捕捉到变化最慢的模式，最持久的知识。

512 个 token 之前学到的内容可能被第一级遗忘（因为它更新并继续了），但第二级仍然保留。2K

个 token 之前的内容可能从第二级消失，但第三级仍然保留。

并且由于所有层级在训练过程中通过反向传播相互连接，知识可以循环回溯。第 3 层级可以提醒

第 1 层级它所遗忘的内容。第 2 层级可以在第 1 层级信息消失前巩固其信息。这通过时间维度形

成了一个循环。

频率 决定了在最大序列长度内一个层级更新的次数。高频率意味着多次更新（局部、

自适应）。低频率意味着较少更新（全局、持久）。并且通过堆叠多个具有各自 的层级，你

创建了一个频谱，即连续记忆系统。

这是一种在多个时间尺度上优雅退化的记忆，能够从更新较慢的层级中恢复被遗忘的信息。不

是两个极端（冻结的 MLP 和转瞬即逝的注意力），而是一系列巩固过程，就像大脑通过不同的频

段将信息从工作记忆转移到中间存储再到长期记忆一样。

θ ​ =i+1
(f ​)ℓ

​ ​{
θ ​ − ​ η ​f(θ ​;x ​)i

(f ​)ℓ ∑t=i−C(ℓ)
i

t
(ℓ)

t
(f ​)ℓ

t

0
if i ≡ 0 (mod C)(ℓ)

otherwise

ℓ θ(f ​)ℓ i C(ℓ)

C(ℓ)

f(θ ​;x ​)t
(f ​)ℓ

t

C =(1) 512

C =(2) 2048

C =(3) 8192

f ​ =ℓ ​

C(ℓ)
L ​max

C(ℓ)

标准梯度下降假设数据样本是独立的。但序列中的 token 是相关的。

标准梯度下降：

标准梯度下降：沿着梯度方向移动，同时保持靠近当前权重。

在 处。

u 是负梯度，是减少误差的方向。

用 L2 回归替换点积：

回归版本：在不过度偏离当前权重的情况下，最小化预测误差。

取梯度，设为零（假设已归一化 ）：

Delta 梯度下降：自适应遗忘

W ​ =t+1 arg ​⟨Wx ​,u ​⟩ +
W

min t t ​∥W −
2η ​t

1
W ​∥ ​t 2

2

u ​ =t −∇ ​L(W ​;x ​)y ​t t t

W ​ =t+1 arg ​ ​∥Wx ​ −
W

min
2
1

t u ​∥ ​ +t 2
2

​∥W −
2η ​t

1
W ​∥ ​t 2

2

∥x ​∥ ​ =t 2 λ

2(W ​x ​ −t+1 t u ​)x ​ +t t
⊤ 2η ​(W ​ −t t+1 W ​) =t 0

这

将梯度设为零以找到最优更新。标准的微积分优化。

变形形式：W_new 乘以某个量 = 目标。需要求逆以求解。

使用 Sherman-Morrison 求逆：

矩阵求逆快捷方法（Sherman-Morrison）。避免昂贵的计算。

回代：

Delta GD：根据输入相似性自适应地遗忘。重复输入 → 忘记更多。

在 处。

看第一个项： 在 处。

这是一种基于当前输入的自适应衰减！当你反复看到相似的输入时， 的值会很大，你衰减

得更强，遗忘得更激进。当输入多样化时，你衰减得较少。

是 Delta 梯度下降（DGD）。记忆会根据数据流的统计信息选择性地遗忘。

W ​(x ​x ​ +t+1 t t
⊤ η ​I) =t u ​x ​ +t t

⊤ η ​W ​t t

(x ​x ​ +t t
⊤ η ​I) =t

−1
​ I − ​x ​x ​

η ​t

1
(

λ + η ​

2
t

1
t t

⊤)

W ​ =t+1 W ​ I − ​x ​x ​
−t (

λ + η ​

2
t

1
t t

⊤) β ​∇ ​L(W ​;x ​)x ​t y ​t t t t
⊤

β ​ =t ​ −
η ​t

1
​

η ​(λ +η ​)t
2

t

λ2

W ​(I −t α ​x ​x ​)t t t
⊤ α ​ =t ​

λ +η ​

2
t

1

x ​x ​t t
⊤

现在我们准备好构建 HOPE 的核心。但是，巨人是什么？

当你选择 L2 回归作为目标，并使用带有动量和权重衰减的梯度下降进行优化时，巨人就会出

现。这就是配方：特定的损失函数和特定的优化器，你就能得到巨人架构。

HOPE 将 Titans 扩展为自指模型。我们不希望假设键和值是给定的，我们希望生成自己的值并从

中学习。而且我们希望每个组件都是自适应的：学习率、衰减因子，所有的一切都是由模型自

身生成的。

序列模型的标准配方：

标准投影：将输入转换为键（用于匹配的内容）、值（用于返回的内容）、查询（用于查找的内容）。

找到最佳内存，将键映射到值。

输出 = 将记忆应用于查询。'记忆对这个查询说了什么？'

预训练的固定投影矩阵 ，但我们希望它们能够适应

使每个投影成为一个在上下文中更新的记忆模块：

自我修改的巨人：学习如何学习

k ​ =t x ​W ​, v ​ =t k t x ​W ​, q ​ =t v t x ​W ​t q

​ L(M;k ​,v ​)
M

min t t

y ​ =t M ​q ​t t

W ​,W ​,W ​k v q

键和值现在来自自适应记忆，它们会根据上下文变化！

我们也想要自适应学习率和衰减因子：

学习速率和衰减现在由模型本身生成。它决定学习速度。

生成你自己的值。不要从预给定的值中学习，而是从当前的内存状态生成它们

每个组件生成它自己的学习目标。模型教自己要学习什么。

每个内存 是一个 2 层 MLP：

2 层残差 MLP：输出 = 输入 + 学习到的转换。简单而强大。

k ​ =t M ​(x ​), v ​ =k,t−1 t t M ​(x ​)v,t−1 t

η =t M ​(x ​), α ​ =η,t−1 t t M ​(x ​)α,t−1 t

​ =v̂□,t M ​(v ​) for □ ∈□,t−1 t {k, v, q, η,α, memory}

M ​□

M ​(⋅) =□ (⋅) + W ​σ(W ​(⋅))□,1 □,2

他们全都使用 Delta 梯度下降和自生成目标进行更新：

完全自适应更新：衰减旧记忆 + 从自生成目标中学习。所有内容都会自适应。

每个组件都是自适应的：

学习率 ？由模型生成

衰减因子 ？由模型生成

数值 ？由模型生成

更新规则？使用 Delta GD 的自适应衰减

这是一个自指的 Titan。模型学习如何修改自身。它学习自己的学习过程。

HOPE 的完整架构：

步骤 1：自我修改的泰坦

自适应内存中的键/值，在块边界处更新以实现高效的并行处理。

M ​ =□,t M ​ α ​I − η ​k ​k ​ −□,t−1 (t t t t
⊤) η ​∇ ​L(M ​;k ​, ​)t M ​□,t−1 □,t−1 t v̂□,t

η ​t

α ​t

​v̂□,t

HOPE：一个具有连续记忆的自指模块

k ​ =t M ​(x ​), v ​ =k,C×⌈t/C⌉ t t M ​(x ​)v,C×⌈t/C⌉ t

每个块生成学习率和衰减。模型控制自己的学习速度。

在块边界处生成自定目标。模型创建自己的课程。

记忆更新：自适应遗忘+梯度步进。平衡保持和学习的平衡。

自修改泰坦的最终输出：查询更新后的记忆。

(表示我们在块边界处更新内存状态以实现并行化)

步骤 2：连续体记忆系统

η ​ =t M ​(x ​), α ​ =η,C×⌈t/C⌉ t t M (x ​)α,C×⌈t/C⌉ t

​ =v̂□,t M ​(v ​)□,C×⌈t/C⌉ t

M ​ =□,t M ​ α ​I − η ​k ​k ​ −□,t−1 (t t t t
⊤) η ​∇L ​t M ​□,C×⌈t/C⌉

o ​ =t M ​(q ​)memory,t t

C × ⌈t/C⌉

连续体记忆级联：输出流经不同更新频率的多层感知机。

每个多层感知机级别使用 Delta GD 以自己的频率进行更新。

信息流：

输入 → 自我修改的 Titan（自适应投影、自我生成的目标、学习的学习率）

Titan 输出 → 多级内存（不同的时间尺度）

知识持续存在，可以通过反向传播循环回来

如果我们能为架构提供连续记忆，为什么不能为优化器提供呢？

见解：在 Adam 中，我们拥有一阶动量和二阶动量。但 Adam 能否在其动量项中考虑越来越长的

信息？这似乎对理解全局损失结构并不太有效，动量仅捕捉局部结构。

因此，我们添加了更新频率不同的额外动量项：

一阶动量：快速更新，捕捉局部梯度结构。每步更新。

y ​ =t MLP (MLP (⋯ MLP (o ​)))(f ​)k (f ​)k−1 (f ​)1
t

M3：优化器的连续记忆

m ​ =t+1
(1)

β ​m ​ +1 t
(1) (1 − β ​)∇ ​L1 W

m ​ =i+1
(K)

​ ​{
β ​m ​ + (1 − β ​) ​ ∇ ​L ​K i

(K)
K ∑j W j

m ​i
(K)

if i ≡ 0 (mod K)

otherwise

第 K 阶动量：慢速更新，捕捉全局结构。每 K 步更新。

第一个动量 负责局部结构，它在每一步更新。第二个动量 负责更全局的理解，它只

每 步更新。然后我们对最终更新进行加权组合。

这为什么重要呢？想象一个持续学习的模型在复杂的损失函数中导航。如果你有弱的记忆管理

能力，你只能考虑局部梯度。动量项无法理解全局视角。但拥有更强大的梯度记忆能力时，优

化器可以理解损失函数的全局特性，并找到更有效的解决方案。

论文中有一个美丽的例子；一个波动剧烈的损失函数。简单的梯度下降（甚至包括动量）需要

花费很长时间才能收敛，因为它不断探索相同的区域。但具有更好内存管理的优化器会记住“我

过去已经经过这个点，我不需要从这个方向继续，我可以从那个方向继续。”它正在从自己的优化

历史中学习。

自我修改发生在这些记忆生成它们自己的学习目标时。它们不再被告知“将这个键映射到那个

值”，而是决定“根据我现在所在的位置，我应该学习下一个内容。”记忆控制它自己的学习过程。

它们都是相同的基本结构。字面意义上。差异仅仅是三个问题：

什么是上下文？是标记还是梯度或其他什么？

频率是多少？你多久更新一次？每个 token？每 512 个 token？从不？

学习规则是什么？梯度下降？Delta 规则？自我指代生成？

那是整个设计空间。

多层次的适应（高阶情境内学习）

自我修改的 Titan 具有嵌套的优化问题。

常规情境学习："我根据示例调整我的输出。"

m(1) m(K)

K

为什么这种架构有效

HOPE 实现高阶情境学习："我调整我处理示例的方式，我调整我调整的速度，我调整我认为值

得调整的内容。"

每个层级都从下一层级学习。

穿越时间的循环

当第一层忘记某些内容时，第二层仍然记得。当第二层忘记时，第三层记得。反向传播让知识

可以向后流动：第一层可以查询第二层，第二层可以查询第三层。

自生成课程

在序列早期，Titan 生成"更简单"的目标。随着其完善，它为自己生成更难的目标。隐式课程学

习。

自适应遗忘

Delta GD 使遗忘context-dependent. 看到重复模式？更激进地遗忘。看到多样化模式？更多保留。

让我们退一步，看清全局。

嵌套学习揭示的内容几乎是荒谬地简单：一切皆是联想记忆。神经网络的每个组件，无论我们

称之为"架构"、"优化器"还是"学习规则"，都只是在某个频率上对某个上下文进行操作的联想记

忆。

架构组件是用于标记的联想记忆。注意力操作在频率∞。它每次都从头重新计算，不存储任何持

久信息。传统的冻结 MLP 模块操作在频率 0，它们在预训练后永远不会更新。这是两个极端。

优化器是梯度关联存储器。动量压缩过去的梯度。Adam 压缩梯度统计信息。它们在解决与架构

相同类型的优化问题，只是在不同的上下文流上。架构看到的是 token；优化器看到的是梯度。

嵌套学习视角

而且还有一个有趣的启示：为什么不能用普通的梯度下降来训练 Transformer 呢？从关联记忆的

角度来看，梯度下降是优化器中最简单的关联记忆。当梯度非常复杂时，它无法正确地压缩梯

度，而 Transformer 生成的梯度就是复杂的。最近有研究表明，Transformer 生成的梯度的 Hessian

比 MLP 模块等要复杂得多。

Adam 之所以有效，是因为它是一种更强大的关联记忆。在论文中，他们展示了 Adam 是关联记

忆对回归损失的优化解。它对梯度的记忆管理更好。当你的架构生成复杂的梯度景观时，你需

要一个具有足够内存容量的优化器来有效地压缩这些信息。

连续记忆系统填补了这些极端之间的所有内容。多个 MLP 模块以 512 个 token、2048 个 token、

8192 个 token 的频率进行更新。一个从 0 到∞的频谱。每一个仍然是关联记忆，只是在自己的时

间尺度上运行。

传统深度学习说：“垂直堆叠层以获得深度。让它们更深更宽以获得更多参数。”

嵌套学习说：“在不同时间尺度上堆叠优化过程。让它们以不同频率更新以获得持续的内存巩

固。”

这里就是实际的好处：我们在一个领域学到的所有知识都可以迁移到另一个领域。所有关于长

上下文建模的讨论，都直接适用于优化器。优化器的上下文是梯度，如果你的优化器内存管理

较弱，它只能看到局部梯度，无法理解全局损失函数的形状。

想想看：一个持续学习器需要在一个复杂的损失函数形状中导航。对于梯度来说，如果优化器

只有短上下文记忆，它就会短视。而如果优化器有长上下文记忆，它就能识别"我之前来过这

里"，并做出更好的决策。那些扩展 token 上下文长度的技术，同样可以扩展梯度上下文长度。

当你用 Adam 优化器训练 Transformer 时，你并没有"一个被优化的神经网络"。你拥有嵌套的记

忆：Adam 的动量（梯度快速记忆，每步更新）、注意力权重（token 无限频率记忆，每次前向传

播重新计算）和 MLP 模块（token 零频率记忆，训练后冻结）。

让一切豁然开朗的直觉

HOPE 只是将这一点明确化并填补了空白。它说："如果我们有每 512、2048、8192 个 token 更新

记忆呢？如果这些记忆能够生成自己的学习目标呢？如果每个组件都能调整自己的学习率呢？"

深度学习架构的错觉在于认为这些是根本不同的事物。注意力机制与多层感知机与优化器。嵌

套学习的现实是认识到它们都是同一事物：关联记忆以不同频率压缩它们的上下文流。

Transformer 为我们提供了两种频率。HOPE 为我们提供了一个频谱。这就是从短期记忆到长期记

忆的桥梁。不是单一机制，而是一系列以不同速度运行的记忆，每个记忆都从前一个记忆中学

习，每个记忆都能够提醒其他记忆他们所遗忘的内容。

这就是神经网络如何解决顺行性遗忘的方法。不是通过构建单一完美的记忆，而是通过构建一

个能够自然地在时间尺度上整合信息的记忆层次结构。

这离真正的持续学习有多近？诚实的答案是还有许多探索空间。

这是其中一个方向，并且它与其他方法正交。我们需要更强大的优化器来更好地管理内存。我

们需要稀疏内存机制。我们需要从多个方面理解持续学习。

但嵌套学习的美妙之处在于它是可组合的。更好的优化器可以接入这个框架。稀疏内存技术可

以与之结合。关于长上下文架构所学的知识适用于优化器。关于优化器动量的所学知识适用于

架构内存。

前进的道路并非寻找一个万能药。而是构建一套正交技术工具箱，这些技术可以组合：嵌套学

习、连续记忆系统、自指模块、更好的优化器内存、稀疏检索，以及从理解架构和优化器之间

深层统一性中涌现的任何其他技术。

我们还没有达到涅槃。但我们已经建起了一座桥梁，这是将信息从短暂转移到持久的第一个真

正机制。而这正是长期以来一直破损的部分。

持续学习智能能发展到多远？

✦

