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Neural Cellular Automata (NCA) represent a powerful framework for modeling biological self-
organization, extending classical rule-based systems with trainable, differentiable (or evolv-
able) update rules that capture the adaptive self-regulatory dynamics of living matter. By
embedding Artificial Neural Networks (ANNs) as local decision-making centers and interaction
rules between localized agents, NCA can simulate processes across molecular, cellular, tissue, and
system-level scales, offering a multiscale competency architecture perspective on evolution,
development, regeneration, aging, morphogenesis, and robotic control. These models not only
reproduce canonical, biologically inspired target patterns but also generalize to novel conditions,
demonstrating robustness to perturbations and the capacity for open-ended adaptation and
reasoning through embodiment. Given their immense success in recent developments, we here
review current literature of NCAs that are relevant primarily for biological or bioengineering
applications. Moreover, we emphasize that beyond biology, NCAs display robust and generalizing
goal-directed dynamics without centralized control, e.g., in controlling or regenerating composite
robotic morphologies or even on cutting-edge reasoning tasks such as ARC-AGI-1. In addition, the
same principles of iterative state-refinement is reminiscent to modern generative Artificial In-
telligence (AI), such as probabilistic diffusion models. Their governing self-regulatory behavior is
constraint to fully localized interactions, yet their collective behavior scales into coordinated
system-level outcomes. We thus argue that NCAs constitute a unifying computationally lean
paradigm that not only bridges fundamental insights from multiscale biology with modern
generative Al, but have the potential to design truly bio-inspired collective intelligence capable of
hierarchical reasoning and control.

1. Introduction

Neural cellular automata (NCA) have recently emerged as versatile computational paradigm, bridging insights from biology and Al
through their capacity to learn adaptive local rules that scale into distributed goal-directed behavior and system-level outcomes [1,2].
Unlike traditional machine learning systems, which often struggle with robustness and generalization in open-ended, dynamic en-
vironments that require abstraction and reasoning [3-5], NCAs excel at modeling tasks ranging from evolutionary development and
self-orchestrated morphogenesis [1,6-13], show great promise to better understand biological regeneration and aging [14-16], can
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efficiently be trained as robust distributed controllers of composite robotic entities [17-23], and are even competitive at challenging
benchmarks for abstraction and reasoning tasks [24,25] (see Fig. 1 for the different types of NCAs and Fig. 1 for the canonical example
from [1] and classical CAs). In this review, we survey modern trends in NCA research and literature, and relate their operational
principles to the multiscale competency architecture of biological organization [26-30] (see Fig. 1A and B), from multicellular col-
lectives to hierarchical neuronal pathways in the neocortex [31-33]. NCAs show great promise as unifying computational framework
for the emerging fields of diverse intelligence and truly bioinspired collective AI [34-36].

Cellular Automata (CAs) are one of the oldest algorithms we can find in the field of artificial life [37], see Fig. 2A-C for an
illustration. A cellular automaton is a discrete computational model consisting of a grid of cells, where each cell exists in one of a finite
number of states, which evolve over discrete time steps based on a fixed deterministic rule. This rule is applied to all cells individually
and will determine the state transition of the cells based on their own state and the one of their neighboring cells. In that way, CAs are
dynamical systems which exhibit complex global behavior from simple local interaction and computation. Decentralized systems such
as Elementary Cellular Automata (Fig. 2A) have been used to model the behavior of complex systems in biology and physics (c.f.,
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Fig. 1. Overview of Neural Cellular Automaton (NCA) models and applications. A) Development and morphogenesis as multiscale competency
architecture via scale-free homeostatic error-correction [6] ; B) NCAs as models for biological evolutionary development through decentralized
collaborative decision-making, and for the « generative genome » [6]; [1] C) Example patterns that can be learned by NCAs [1]; D) Adversarial
take-over experiments of phenotypic traits such as skin color (top row) and phenotypic shape (bottom row) of pretrained NCAs [15,16]; E)
Self-classifying MNIST digits of NCA cells negotiating about what digit they are part of [54]; F) NCAs find shortest paths and solve mazes [12]; G)
NCAs as unifying substrate for growing form & function of decentralized robots [18,19,21,22] ; H) Self-Assembling and regenerating 3D Minecraft
machines [22]; I) Xenobots - artificial, intelligent, yet fully biological novel lifeforms that have been designed in silico and realized in vitro [66]; J)
EngramNCA trained and deployed on ARC-AGI-1 tasks [8,24].
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Fig. 2B), and despite their simplicity, it has been shown that CAs like Elementary CAs, Conway’s Game of Life (Fig. 2C), and Wireworld,
are capable of universal computation [38,39] showing their remarkable modeling capacity and representational richness. Earlier work
performed by von Neumann, Barricelli, and Langton used CAs to respectively model biological mechanisms like self-reproduction [40],
evolution [41], and artificial life in general [42]. Since then, CAs have been applied to a variety of biological and computational
phenomena including universal constructors [43], biological pattern formation [44], complexity [45,46], and of most relevance here,
they have been used to model emergent collective behavior in complex systems [47-51].

Very recently, CAs have gained a renewed attention in the context of artificial intelligence (AI). Modern computational capabilities
have allowed researchers to develop more sophisticated CA models that can process information in a way very similar to neural
networks [52]. Miller’s pioneering work demonstrated the successful evolution of cellular automata with self-repair and
self-regulation capabilities for producing the "French flag" pattern, establishing that evolutionary algorithms can identify multiple
distinct rules sets capable of morphogenesis [53]. In the same perspective, Nichele et al. evolved compositional pattern producing
networks for cellular automata morphogenesis and replication [44]. These developments have led to the emergence of NCAs, which
combine the distributed processing characteristics of traditional CAs with the learning capabilities of neural networks [1,2]. Unlike
conventional CAs with fixed rules, NCAs substitute their hardcoded local update functions with cell-specific Artificial Neural Networks
(ANNSs); as universal approximators they can be trained via gradient-based optimization or evolutionary algorithms on complex
collective target behaviors to solve, for instance, the inverse task of target pattern assembly, or in silico morphogenesis.

Several important developments have expanded the scope and functionality of NCAs beyond basic morphogenesis tasks. Self-
classification capabilities were demonstrated by Randazzo et al. [54] (see Fig. 1E), who showed that NCAs could learn to catego-
rize their own emergent patterns. Solving spatial problems like solving a maze were demonstrated too [12] (see Fig. 1F). The concept of
embedding spaces for morphogenetic processes was introduced through the NCA manifold framework [55], enabling the
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Fig. 2. From elementary Cellular Automata (CAs) to Neural Cellular Automata (NCAs). A) An elementary CA with binary states (0: white, 1: black)
on a one dimensional grid (horizontal axis) that evolve based on a fixed update function over discrete time steps (from top to bottom). Such an
elementary 1D CA has 28 = 256 possible local neighborhodds, and thus 256 possible udpate rules; here, we present a CA’s state evolution following
"rule 30’, i.e., 30 = 00011110, in binary notation, which causes intriguing complex and seemingly random patterns [45]. B) Color-patterns on
seashells (top is real, bottom is CA generated) [74]. C) A two dimensional CA on the example of Conway’s Game of Life [151]. The Moore
neighborhood, update rules, and example state-evolution of stationary, periodic, and moving patterns are shown; different initial states can give rise
to vastly differently complex behavior. D) Canonical (growing) NCA architecture, illustrating self-regulatory update steps applied on a 2D lizard
morphology [1].
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representation of different developmental trajectories in structured latent spaces. Tesfaldet et al. incorporated self-attention mecha-
nisms directly into the cellular update rules, allowing individual cells to selectively focus on relevant neighborhood features [56].
Information-theoretic principles were integrated into NCA design, by introducing empowerment as an auxiliary objective function to
encourage coordinated cellular behaviors that enhance system robustness and adaptability [57,58]. The stochastic modeling of
emergent dynamics was advanced by Palm et al. through their Variational Neural Cellular Automata framework, which employs
variational inference to capture the probabilistic nature of pattern formation processes [59]. Multiscale emergent phenomena were
developed by Pande and Grattarola (2023), who proposed hierarchical NCA architectures capable of systematically modeling inter-
cellular behaviors across different levels of resolution of hierarchically stacked NCAs [11].

The intersection of cellular automata with deep learning has opened new avenues for research in several domains. In computer
vision, they are used for segmentation and texture synthesis applications [60-62]. In robotics, Variengien et al. investigated the
evolutionary optimization of NCA-based control architectures for balancing tasks in cart-pole environments, demonstrating the
feasibility of using distributed cellular computation for dynamic control problems [23]. And Horibe et al. explored the regenerative
capabilities of NCAs in soft robotics applications, where cellular update rules enable autonomous morphological reconstruction
following structural damage, similarly to the self-repair mechanisms observed in biological organisms [18,19]. Pontes-Filho et al.
demonstrated that growing NCAs can be used to first assemble an in silico robotic morphology, i.e., self-assemble a robotic body with
tissue-, sensor-, and actuator-cell differentiation steps on an NCA’s grid throughout a developmental timeframe, and second utilize the
robots’ composite body and the NCA’s intercellular communication protocols as embodied policy for 2D navigation tasks [21] (see
Fig. 1G); relatedly, 3D self-assembly [63] and behavioral policies [22] (see Fig. 1H) have been achieved. Furthermore, Najarro et al.
demonstrated that 3D NCAs can be evolved to self-assemble hypernetworks that parametrize large-scale policy networks of RL agents,
e.g., for the Lunar-Lander environment, an approach termed HyperNCA [20].

Recently, Hartl et al. successfully demonstrated that NCAs can be evolved to robustly control deformable microswimmers in silico in
a fully decentralized way by utilizing locally coordinated body deformations in a physically realistic hydrodynamic environment;
strikingly, these decentralized control policies generalized well across morphologies, i.e., swimmer sizes, and even allowed robust
locomotion if large fractions of the swimmer’s actuators were removed or disabled [17]. A related approach by Medvet et al. and
Pigozzi et al. used local self-attention and NCA-like control paradigms to evolve embodied soft-robotic 3D morphologies [64,65] which
have assisted as in silico models to the successful creation of novel in vitro lifeforms, i.e., Xenobots [66] and Anthrobots [67,68] (see
Fig. 1D): living, swimming self-powered biobots. Decentralized control in autonomous soft robotics thus holds great potential for future
biomedical applications. NCAs have also been used to model complex biological phenomena, including for example morphogenesis [1,
22,69], the scaling of goals from metabolic to organism-level goals via homeostasis [9], bioelectricity [70], memory [8], aging [14],
cortex mechanisms [71], and evolution [7] (see Section 3 for details).

Indeed, by design, the NCA architecture mirrors a large part of biological organization and particularly the multiscale competency
architecture, where biological organisms exhibit nested hierarchies of goal-directed behaviors operating across different spatial and
temporal scales [6,26,27,36]. In biological systems, individual cells maintain homeostatic goals at the molecular level while simul-
taneously participating in tissue-level morphogenesis, organ-level functionality, scaling biological organization up to organ-level,
organism-level behavior, and beyond. Similarly, NCAs show a multi-competency architecture by design as they are composed of
cells embedding a neural network for decision-making and actions. Such NCAs can be organized into hierarchical structures where
local cellular objectives emerge into progressively larger-scale system competencies [9,11]. These systems can exhibit anatomical
homeostasis [26] and, in turn, can serve as in silico model systems to study biological phenomena like aging and rejuvenation when the
cybernetic tissues begin to decline [14]. Therefore, NCAs are models particularly suited to investigate multiscale information pro-
cessing in biological or artificial life systems. In addition, the distributed architecture of NCAs show good robustness and
error-correction mechanisms similarly to biological systems [9,18,72,73]. Just as biological organisms can maintain functionality
despite cellular damage or mutation through compensatory mechanisms, trained NCAs demonstrate remarkable resilience to per-
turbations, damage, or partial removal of cellular components while maintaining their ability to regenerate target patterns [1,9,18].
The temporal dynamics of NCAs also align closely with biological time scales, operating through iterative local updates that mirror the
continuous, asynchronous cellular processes in living systems. Consequently, NCAs serve as a bridge between artificial intelligence and
biology, offering a computational substrate that naturally incorporates the fundamental organizational principles underlying life itself.
The interest of NCAs extends beyond pure biological applications and may present a new kind of Al based on collective intelligence and
can show properties difficult to achieve in conventional Al and deep learning like self-repair capabilities, adaptive morphology and
architecture, and the scaling of intelligence.

In this paper, we review the different use cases of NCAs for biological modelling, including morphogenesis and self-organization,
aging, regeneration and bioelectricity, molecular design, and the generative genome. Then, we discuss why NCAs may be a model of
choice for the modeling of biological systems based on the framework of biological multiscale competency architecture, i.e., by the
idea that biological systems are made of agential material. We also discuss why they may be particularly important beyond classical Al,
as NCAs are Al based on collective intelligence. We conclude with the challenges and limitations this kind of models are currently
facing.

2. Neural cellular automata fundamentals

A CA comprises a discrete, typically 2D grid of cellsi € 1,...,N, each maintaining a numerical, often discrete but potentially also
continuous vector-valued state st. The state s! of each cell i evolves over discrete time steps t—t + 1 via local transition rules f : s{—sf*!

i
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by considering the cells own state and all the states of its neighbors. Formally, this can be expressed as s't! = f (s}, {s}} " )) , where
jer(

/(i) represents the neighborhood of cell i on the CA’s grid, often a Moore neighborhood. Even hardcoded update functions give rise to
elaborate complex behaviors, but the framework allows any local update function (deterministic, stochastic, etc.). In Fig. 2A-C we
illustrate the state evolution of a 1D elementary CA, a biological example on seashell patterning following CA-like rules [74], and an
illustration of a 2D CA on the example of Conway’s Game of Life.

NCAs extend CAs by using learnable — often differentiable — update rules f—f, that are realized by an ANN with parameters 0; see
Fig. 2D. This enables each cell i on the NCA to self-regularize its continuous vector valued states x! based on perceptions of its local
neighborhood .7"(i) on the grid. Importantly, in vanilla NCAs, all cells use the same ANN architecture and parameters for their updates
and are thus symmetric in functionality, which nonetheless can give rise to asymmetric — and potentially incredibly rich — cell-state
dynamics. For differentiable update functions (i.e., ANNs) fy, the entire system can be optimized end-to-end via gradient-based
learning (e.g., backpropagation through time), allowing emergent self-organization to be shaped by a global loss function rather
than being subject to predefined logic. In this way, NCAs unify the local self-regulatory dynamics of CAs with the optimization
principles of deep learning, enabling adaptive, data-driven discovery of task-specific cellular interaction protocols. In their most
elemental form, NCAs implement convolutional neural networks (CNNs) with a single 3 x 3 convolutional layer followed by a dense

feed forward layer that outputs a proposed cell-state update Ax} = fy <x}, {x}} " )); the parameters 6 thus describe synaptic weights
e

and neuronal biases, typically amounting to a total number of ~10.000 [1] but depending on the application can range from ~ 102[7,
75] to =~ 10 [76]. Formally, we can express such a state update as x}“ =x+ Ax.

In their Growing NCA paper, Mordvintsev et al. demonstrated how to efficiently optimize the ANN parameters 6 so the NCA will
reliably self-assemble a 2D target image (e.g., of a lizard or smiley-face emojis) starting from a single seed cell on the grid [1] (see
Fig. 1). This was realized by assigning the three items in each cell state vector as cell-specific RGB channels, y! € R®, which can be
compared with the RGB values of the corresponding pixels of the target image, y; (the full state x} can be higher-dimensional, e.g., 16D
in [1]). Moreover, to realize real growth dynamics that starts from a single seed cell with (potentially trainable- [7,8]) initial conditions
x50 in the center c of the NCA’s grid, a designated a (opacity) channel was introduced to distinguish "living" cells — with a > ar larger
than a threshold of typically ar = 0.1 — from the background. In contrast, the states of "dead" cells are initially, and after every step set
to zero. Only cells with one or more living neighbors can update their cell state and thus contribute to this in silico embryogenesis
process. This makes the NCA’s dynamics differentiable across temporal state updates x}—x!"! and allows employing gradient-based
parameter optimization methods on global loss functions over emergent patterns {y;° }i oy With respect to target patterns {?i}i o
With this, the inverse problem of target pattern formation (of images or textures), but also novel applications such as self-regulated
classification or image segmentation can be solved by means of differentiable collective intelligence.

To improve convergence on spatial self-assembly tasks, the NCAs cell states are often augmented with additional perception layers

f(x} { xjt} f‘(')> such as Sobel-like filters that extend cell state information with, e.g., local state gradients x{ —x} U f(xf {x}} /‘<‘)) .
Je/ (1 Je/ (1

To stabilize long-term behavior of the NCA’s self-regulatory behavior, especially in morphogenesis tasks, it turned out effective to
deliberately corrupt the NCA’s cell states, e.g. by erasing (masking) parts of the pattern, and train the system to not only learn how to
grow but also how to repair a target morphology. Such NCAs exhibit remarkable regeneration capabilities akin to axolots or planaria
[1].

In non-differentiable situations or reinforcement learning (RL) applications, evolutionary algorithms or neuroevolution techniques
have proven efficient to optimize NCA parameters [7,9,20,21]. To increase robustness, stochastic cell updates have been introduced —
via an update probability — that constrains the cells’ reliability to regulate their own state by discarding proposed updates Ax{—0
across stochastically chosen cells and time steps [1]. This explicitly implements an asynchronous update process across the NCA’s grid
that requires cells to generalize across cellular neighborhoods by learning how to distinguish between signal and noise. This avoids
overfitting cellular policies on local cell-state dynamics and, in turn, promotes global patterns as collective attractor states enabling
robust morphogenesis and self-repair. Notably, this renders NCAs as closely related to denoising diffusion models [77-81], as we and
others discussed in detail elsewhere [6,7,76,82] and below. Hartl et al. [7] improved both robustness and evolvability by utilizing
noise in the update function Ax{—Ax! + ¢&; choosing or evolving the right combination of noise and cellular reliability (via the update
probability) have proven effective to enhance learning and generalization capabilities of NCAs (see Fig. 3A).

Although the NCA’s grid states serve as recurrent feedback signal in the unfolding dynamics — that gradually refines high-entropy
initial conditions into structured samples conforming to the target data manifold — the majority of used ANNs are, thus far, feed-
forward in nature. However, several contributions demonstrated that different ANN architectures, such as attention mechanisms
[561, recurrent internal feedback layers [7], explicit separation of private and public cell states [8] (see Fig. 3B), and even hierarchical
NCA architectures with interconnected stacked layers [10] (see Fig. 3C), to name but a few examples, can not only be efficiently
trained but scale the applicability of NCAs towards truly bio-inspired cybernetic systems, as we will discuss below.

3. NCAs for Al-oriented computational biology
Modeling development and evolution with NCAs

Extending CAs with trainable ANNs, NCAs have been growingly applied in the simulation of morphogenesis in the last few years [1,
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states via « GeneCA » and transfer of private genetic information via «GenePropCA » [8,24]. C) Hierarchical NCAs (HNCAs), comprising multiple
integrated (stacked) layer of NCAs of inreasingly coarse resolution at higher level in hierarchy. Cells integrate cell state information not only of their
lateral neighbors, but of neighbors in adjacent layers as well. While lower level cells perform the most detailled dynamics, higher level NCAs
progressively condition the collective behavior of adjacent lower levels and thereby can form increasingly more abstract representations and de-
Eisions. In that way, HNCAs develop hierarchal forms of control in multiscale architectures [10,11].

7,9-11,22,57]. Very recently, the ENIGMA model enhanced the biological fidelity by replacing ANN with gene regulatory networks
(GRNs) in each cell and incorporating cell-cell signaling pathways to mimic real biological signaling [83]. Evolutionary algorithms
have been employed to ensure that ENIGMA can generate stable tissue patterns under varying conditions and thus draw a connection
between computational models and biological systems. Similarly, [9] argued that biological systems can be understood as a hierarchy
of homeostatic loops which range from cellular metabolic homeostasis to tissue and anatomical homeostasis. This concept is significant
in drug design as in this view, molecules have to be targeted at higher levels than specific cellular processes or genetic targets, they also
have to fit into the overall homeostatic networks that are trying to restore the setpoints of the body, like morphoceuticals [84]. NCAs
have also been used to investigate the evolutionary implications of systems that can self-organize in a multi-competency architecture
and found that the evolutionary process is greatly influenced by the cellular competency at several scales [7].

In these studies, NCAs have been employed to problems in morphogenesis, development and evolution, including the French flag
problem, which is a model problem in the context of positional information in developmental biology. These simulations also
demonstrated that simple competencies in cells can be scaled up to result in tissue-level organization and that there is robustness and
error minimization in the formation of the anatomy [7,9,83]. Moreover, these systems demonstrate enhanced robustness against
adversarial noise, generalizing well to changing system parameters, and exhibit enhanced transferability towards modified target
patterning objectives [7,22].

Very recently, EngramNCA has been introduced, a specialized NCA architecture that incorporates private, intracellular memory
channels alongside publicly visible cell states, enabling decentralized memory storage and transfer while facilitating the emergence of
hierarchical and coexisting morphologies [8]. Inspired by biological evidence of intracellular memory mechanisms beyond synaptic
changes, EngramNCA allows cells to propagate "genetic" information through hidden channels, leading to self-organized growth of
diverse structures from a common seed (see Fig. 3B). This model demonstrates robust self-organization in morphogenesis, where
simple local rules scale to produce complex tissue-like patterns with enhanced adaptability and regeneration capabilities, even in the
presence of perturbations [8].

Modeling regeneration and aging with NCAs

One of the most promising applications of NCAs is in regenerative medicine. The paper "Growing Neural Cellular Automata" [1] has
showcased the regenerative potential of NCAs by training such models to regrow patterns after simulated damage, such as cutting or
removing sections of the target structure. By incorporating perturbations during the training process — including stochastic updates
and pool-based sampling — these NCAs learn to persist and self-repair complex patterns like lizard or emoji shapes, mimicking bio-
logical regeneration where local rules enable recovery from unseen injuries [1]. Extending this to practical applications in soft ro-
botics, researchers have developed NCAs that allow simulated robots to regenerate their morphology solely through local cell
interactions, evolving separate automata for initial growth and post-damage repair [64,65]. In experiments with 2D and 3D
voxel-based robots, damaged morphologies (e.g., bipeds or tripods) achieved up to 99 % structural similarity to originals, with varying
locomotion recovery (67 % in some cases), highlighting implications for resilient, self-organizing systems in dynamic environments
[64,65]. This regenerative framework has also been scaled to 3D artefacts, where NCAs generate and repair functional machines in
virtual worlds like Minecraft, starting from a single cell. They demonstrate enhanced recovery (e.g., 99 % block regeneration after
halving a structure) when explicitly trained for damage resilience, paving the way for self-repairing physical structures inspired by
biological morphogenesis [22]. More recent advancements integrate NCAs into diffusion models for parameter-efficient image syn-
thesis, enabling efficient inpainting tasks where missing image regions are regenerated with high fidelity leveraging local commu-
nication to maintain contextual consistency and drawing analogies to biological tissue repair in fields like pathology imaging [76].
These examples underscore NCAs’ versatility in modeling self-organized regeneration across scales, from cellular patterns to
macroscopic structures.

NCA simulations have shown the important role of bioelectric patterns in guiding tissue development like in planarians and other
organisms [85]. For example, NCAs were used to model disrupted craniofacial structures in tadpoles that subsequently reorganize and
achieve correct anatomical configurations following a specific bioelectrical pattern, and provide a framework for therapeutic in-
terventions [70].

NCAs have further been applied to aging, conceptualized as a decline in tissue morphology [14]. Evolutionary simulations showed
that aging results from loss of goal directedness in morphospace at tissue level, leading to breakdown of collective anatomical ho-
meostasis and morphological decline, even in the absence of genetic damage or accumulation of noise [14]. In addition, this study also
revealed that there is dormant regenerative potential in aged tissues, which can be reactivated through targeted interventions. This
finding reveals ways to develop strategies to rejuvenate tissues and extend healthy lifespan [14,86].

Overall, the use of NCAs for modeling biology extends beyond morphogenesis. They can be used to understand aging and
regeneration processes, and they provide insights into biological information processing at multiple levels—including genetic and
bioelectrical. This modelling approach generates new hypotheses, sometimes experimentally validated [9,70].
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NCAs as a model for the generative genome

Evolution through developmental reproduction involves encoding the features and functionality necessary for high-fidelity
reconstruction of an organism into the compact form of the genome; rather than directly encoding a “blueprint” or developmental
“program”, the genome more accurately represents a bowtie of latent variables instantiating organismal development. This process
unfolds through gene regulatory mechanisms at the cellular level, informed by environmental cues and top-down feedback from higher
organizational scales, establishing a multiscale framework [26,30,87]. Importantly, this process is neither deterministic nor simply
emergent but can be related to a creative problem-solving layer between the genome and the phenotype of an organism that can deal
with novel situations and environmental conditions on the fly. Such an architecture represents a form of collective intelligence from
the bottom up and an embodiment of collective intelligence following William Jame’s definition of intelligence "reaching the same
goals by different means" [26,27,36].

The collective architecture of NCAs aligns closely with the nested bowtie structure of developmental biology, encompassing
distributed gene regulatory mechanisms to emergent tissue or organ patterns. Each NCA cell maintains a numerical state akin to the
physiological status of biological cells (e.g., transcriptomic expressions), while internal ANNs regulate localized cell states according to
a collective system-level agenda (modelling biological cells’ GRNs). Through that lens, the unfolding dynamics of NCAs - intercellular
communication and intracellular information processing — closely models the distributed self-regulatory process of morphogenesis and
morphostasis of distributed cellular agents interpreting and reacting to their local environment under novel morphogenetic contexts.
The ANN of NCAs thus embody the generative genomic bottleneck for evolutionary development, not only positioning the genome as
functional and generative unit, but empowering NCAs to serve as a distributed model for adaptively and creatively reconfiguring
cellular expressions during the course of collective organismal development [6,38].

Thus, NCAs might be excellent candidates for bridging the computationally irreducible gap between the agential layer of physi-
ological computations connecting an organism’s genotype and phenotype and in silico modeling and simulation via self-regulatory
generative AL While significant questions remain, NCAs may reflect real-life developmental pathways that can be intervened with
in simulation, if trained on authentic biological data (as demonstrated through targeted adversarial reprogramming or takeover of
tissue [15,16], see Fig. 1D). NCA research thus offers a transformative character in regenerative medicine, bioengineering, and syn-
thetic biology [6].

NCAs for medical applications: molecular design and interaction modeling

NCAs have also been employed in drug discovery and protein docking. By representing small molecules and proteins as voxelized
structures, NCAs have been used to design small molecule interactors, reconstruct protein structures, and model complex biomolecular
interactions. These models are not only capable of simulating molecular docking and physical transformations but also of goal-directed
molecule design by conditioning generation on specific protein targets. Moreover, NCAs may also be useful in reconstructing missing
protein regions and modeling dynamical processes like isomerization, thus increasing their relevance to drug design and structural
biology. However, the versatility of these NCA models renders them somewhat inferior to the current state-of-the-art methods (such as
diffusion- or transformer-based foundational models [89,90]1, yet they exhibit promising potential in translating conceptual advances
to practical applications in precision medicine and biomolecular engineering [91].

4. NCAs as a model of choice for biology, and beyond?

NCAs have an important characteristic that make them very suitable to address deep biological questions: their multiscale com-
petency architecture. Indeed, biological systems show cognitive capabilities at different levels of biological complexity, from mo-
lecular networks to cells, tissue, organs until the whole organism and beyond (see Fig. 1-A and B). This architecture enables distributed
problem-solving where individual components possess limited competencies that collectively generate sophisticated system-level
behaviors through dynamic interactions and information integration [26,27]. In biology, we can find these competencies even
below the cell level, GRNs have shown different types of learning and memories [92], and there is a large body of studies showing that
we can find cognitive capabilities like memory, decision-making, anticipation, and learning at all levels of biological complexity [26,
27]. At tissue-level, the collective behavior gives rise to wound healing, and morphogenesis that exceeds the capabilities of the in-
dividual agents [31]. At higher levels of organization, organs and the entire organisms coordinate across scales to achieve complex
anatomical homeostasis and adaptive responses to the environment [93]. Following the field of Basal Cognition [94-97], evolution
likely pivoted the same strategies used by cell collectives to navigate the space of anatomical possibilities during morphogenesis into
brain-based navigation of 3D space, leading to the emergence of higher intelligence [26,27,98]. Morphogenesis is an example of
cellular collectives navigating the morphospace to resolve a goal-directed, system-level control task, i.e., forming and maintaining
target anatomical states via bioelectric, biochemical, and biomechanical signaling and homeostasis—providing a ready substrate for
scaling into behavioral intelligence (that can be seen as navigation in 3D space [29]). They navigate the morphospace and rely on the
same molecular hardware that is now used by neurons (ion channels, gap junctions, neurotransmitters), enabling active information
integration, error correction, and memory long before brains actually evolved [26,27,94-99]; several mechanisms that are typically
attributed to cognitive (neuronal) processes have long been employed by (sub)cellular collectives: transcriptional and physiological
networks maintain multiple forms of memory [92,100], cell and cellular collectives use active inference for pattern regulation [101],
and bioelectric circuits exhibit perceptual bi-stability [102]; see also [103,104] for other examples. The TAME framework formalizes
this evolutionary pivot via the notion of the scaling of goals from cellular to anatomical homeostasis that generalizes to behavior in
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physical 3D space [27]. By sharing information and stress, sub-agents work together to solve higher-level problems [9,99].

Current Als like large language models (LLMs), transformers etc. don’t really leverage this modular, scale-bridging integration of
established competencies. Each formal neuron in a deep learning neural network, is treated only as a filter, firing with a predefined
signal after a certain activation threshold is reached. These neuronal models are not capable of learning or forming a memory
themselves; while learning and information processing dynamics only occur at the scale of the whole network. This might stand in
stark contrast to biological neurons, especially to cortical columns in the human neocortex. The neocortex is formed by an integrated
2D grid of copies of the same neuronal circuit, the cortical columns, which have been argued to be capable of learning arbitrary
concepts of our reality (objects, animals, other human beings, mental constructs, etc.). More importantly, these cortical columns might
literally "model" the learned concepts and thus represent interactable reference frames or world models for relevant features of our
Umwelt [32,33,105,106]. Remembering would thus trigger models of past experiences, and thinking would translate not only into a
navigation process through an associative conceptual space, but dynamically construct a network of interacting world models that are
relevant under a certain context [6,32,33,107]. NCAs might be excellent candidates to model such an architecture: they maintain a
trainable ANN in each cell of an integrated grid which are in principle capable of representing reference frames of arbitrary concepts
[108]. In turn, NCAs might not only be excellent models for biological self-organization as a multiscale competency architecture, but
even for higher-level cognitive processes of the human neocortex such as active perception [71,109], raising fascinating questions
about the parallels of morphogenesis and cognition [26,27,104].

Currently, the focus for scaling intelligence is based on the scaling of training data, model parameters, and computational resources
[110]. This approach is incredibly resource intensive, and so-far mimics but a fraction of the capabilities of what biology achieves
seemingly effortlessly. Several prominent Al researchers criticized the costs associated with exploiting scaling laws for commercial-
izing LLMs and ask for the development of new Al architectures beyond transformers. While LeCun promotes a world-model based
approach [111], NCA architectures and their self-regulatory dynamics during inference represent a potential solution to this archi-
tectural gap by implementing biologically inspired scale-bridging learning dynamics. Indeed, biological evolution modularly repur-
posed minimal collective goal-directed behavior (homeostatic loops) into ever higher-level problem-solving agents (composed of
competent sub-agents) through competency amplification and an internal motivation for novelty, rather than data accumulation [9,
27]. By design, NCA architectures implement the scaling of intelligence from local cellular communication pathways to system-level
behavior and, potentially, to integrated world models.

Recently, ARC-NCA has demonstrated impressive performance on the abstract reasoning corpus (ARC) challenge, a collection of
carefully designed tasks to benchmark modern AI frameworks for "general intelligence" and abstraction and reasoning capabilities [4,
5]. Thus far, ARC remains an extremely challenging fundamental test for artificial general intelligence (AGI) both for explicitly crafted
models as well as the most competitive large reasoning models, such as GPTs [3]. Interestingly, vanilla NCAs and EngramNCAs perform
competitively on the ARC challenge compared to ChatGPT-4.5 — notably at the fraction of costs and computational resources — by
leveraging developmental processes of simple interactive cellular agents that collectively self-assemble, i.e., "grow", the complex
patterns of the ARC-AGI-1 benchmark [24,25]. In a sense, ARC-NCA models represent an embodiment of the problem-solving ca-
pacities necessary for the ARC challenge, reflecting the immense computational power that roots in embodied basal cognition [27,34].
In that way, ARC-NCA can learn to generalize to grow the target-pattern modalities of many ARC-AGI-1 examples from a minimal set of
two or three training examples, something standard Al and ML techniques struggle to achieve.

This raises fundamental questions about the organizing principles underlying nested biological systems: are composite agential
objects embodied models of environmental features relevant at their scale [112]? How does this hierarchical representational structure
emerge across spatial and temporal scales — from molecular machines to social collectives [9,26]? Viewed through this lens, biological
agents at every level function not merely as components or effectors, but as embodied representations of their respective environment,
while pursuing developmental goals and systemic integrity [26,27,113]. For example, a bistable enzyme may be an embodied model of
ligand-specific decision-making; its conformational switch encodes a dynamic inference about molecular context. The transcriptome
functions may be seen as an embodied intracellular model of cell-fate specification within the morphogenetic field. Bioelectric fields —
coordinated by collective cellular behavior — serve as coarse-grained, spatiotemporally models guiding embodying cellular collectives
toward large-scale pattern formation of target system-level outcomes [114]. Even animals can be understood as living world models
[111,115]: while their bodies are evolutionary fitted for the challenges of their Umwelt, their brains do not simply simulate the
environment but embody its structure through continuous interaction. Neural circuits are not merely predictive tools, they function as
dynamic, embodied representations of environmental regularities, integrating perception, action, and anticipation in real time [30,32,
33,107,116]; this might even scale to swarms or groups as distributed models of environmental stability and multi-agential coordi-
nation [26,28-30,36,117-122].

Crucially, these modeling aspects are not invented anew at every scale, but are regularities themselves — and if this process applies
at every scale, this necessarily includes repurposing lower-level organizational units as building blocks to form higher-level embodied
models [117,123]. Evolution is tinkering, i.e., life does not design from scratch, it reuses, refactors, and repurposes across scales [26,
124]. Biological systems are not just composites of passive parts but are layers within layers of repurposable agential substrates — each
unit simultaneously acting as an agent, a model, but also as signal. Proteins become signals in GRNs; the GRN state informs cell
identity; cellular states coalesce into tissue-scale morphogenetic patterns, etc., all structured by self-modeling dynamics [6,9,26,28,29,
92,100,125]. Thus, biological organization might fundamentally be rooted in self-modelling of scale-dependent (relevant) environ-
mental contexts through repurposable embodiments — scale-bridging representations that allow nested agents to maintain their
physiological integrity against diffusive, entropic processes; this has been formalized on thermodynamic grounds via the variational
free energy principle, or active inference [116]. This suggests that biology might be understood as models-within-models rather than
merely layers-within-layers of organization — a multiscale competency architecture where agency and embodied representation are
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inseparable. NCAs provide a computational framework that mirrors this hierarchical representational architecture: flexible local rules
allow to generate global structure through embodied learning and coordination, offering a tractable way to explore how scale-bridging
models emerge from simple, repurposable units and providing insight into the dynamics of nested biological self-modeling. Although
there are still limitations to the analogy of NCAs and biological systems (see Section 5), NCAs offer a promising architecture to enable
reuse of acquired functionality across scales, for instance, through curriculum learning [7], hierarchical or dynamical integration [10,
11], and modular conditioning [8]. Moreover, especially in composite robotic scenarios, NCAs represent an intriguing testbed for
studying hierarchical modeling and embodied coordination. A deeper understanding of such scale- and substrate-bridging mechanisms
of intelligence could even position NCAs as a good candidate to develop Al-generating algorithms, e.g., distributed learning systems
that, given enough time, self-organize modularly toward intelligent behavior without external intervention [126].

Recent developments by Béna et al. investigate the potential of training NCAs with gradient-based methods to perform universal
computation in continuous state spaces. This was achieved by training NCAs with task-specific objectives to guide the emergence of
fundamental computational primitives, i.e., logic gates which can be integrated by the NCA’s dynamics into universal NCAs [127].
Relatedly, Miotti et al. demonstrated that differentiable logic gates can be used to model update functions of single cells in discrete CAs;
these Differentiable Logic CAs can be efficiently trained end-to-end on system-level objectives for CAs with a discrete state space
DiffLogicCA [128]. These ideas represent first promising steps towards self-assembling universal computation that is based on col-
lective and distributed intelligence, and akin to the operational properties of biological matter.

Future studies will show whether the dynamics in computational medium of NCAs will undergo a similar transition from multi-
cellular communication pathways observed in basal tissue to scale-free activation patterns observed in neuronal networks. This
transition might involve explicit hierarchical architectures [10,11] (see Fig. 3C), or graph-like organization comprising short and
long-range connections as opposed to the fixed grid layout of current NCAs, and might bring about novel understandings of the
multiplicity of the computational power of different type of biological matter. For instance, recent promising studies argue that even
vanilla NCAs that are evolved to exhibit critical-like dynamics — validated by matching power-law avalanche statistics in their
spatio-temporal cell state activities — and NCAs pretrained toward a near-critical regime have been reported to provide more efficient
initial conditions for learning down-stream tasks [109,129]; related analysis of stochastic CAs supports the use of power-law di-
agnostics to assess criticality [130]. However, identifying robust quantitative measures of criticality in NCAs (e.g., correlation length,
susceptibility) and developing training schemes that explicitly maintain or regulate (or exploit) criticality remain important open
challenges. Criticality in the cortical brain networks is hypothesized to maximize computational capacity by sustaining long-range
correlations, power-law distributed neuronal avalanches, and efficient signal propagation across scales. Such a near critical state
offers the exact mixture of structured signaling and operational flexibility necessary for optimal learning and information processing,
balancing sensitivity to input with stability in network dynamics [131-135]. It has been argued that criticality is a universal setpoint
for brain functions [136]. However, cognition is a spectrum and does not seem to be restricted to neuronal dynamics, the latter are only
speed optimized for agents navigating our 3D Umwelt, but the governing bioelectric dynamics are much more ancient [26-28,31,85,
113]: understanding biology as a multiscale competency architecture increasingly blurs the line between collective biological coor-
dination and cognitive emergence. Criticality may not be merely a dynamical regime but a functional scaffold enabling self-regulatory
agency across scales (from ion channels to tissues to behavior).

On this view, the brain’s critical state is not the pinnacle of evolution but a fundamental tunable threshold allowing decentralized
systems — whether neural or non-neural — to maintain homeostatic plasticity while preserving structural memory. Not only minds, but
also biological forms, and, in general, collaborative collectives are solutions to information problems, and critical dynamics provide
the optimal "sweet spot" for exploration vs. stability in both cognitive inference and developmental patterning [28]. Emulating such
dynamics with NCAs may not only improve learning efficiency but also reveal fundamental principles linking biological organization
to computational resilience — offering a bridge between the physics of collective phenomena and the emergence of cognition. Through
this lens, NCAs are not just tools, but might be models of life’s underlying (near-critical) computational logic [6]. All together, these
approaches represent technologically feasible ways to tackle the emerging research direction of Diverse Intelligence [35] and the
TAME framework [27], and new forms of Als based on collective intelligence.

5. Challenges and limitations

The ANNs inside each cell in NCAs are definitely less complex than large fully connected neural networks. Still, balancing model
complexity (of the single-cellular agents) and interpretability of the emerging dynamics is far from trivial. It is unclear how to interpret
and best analyze the integrated dynamics of such systems that undergo distributed computation. NCAs, thus far, represent toy-models
for biological organization and for self-regulated complex systems in general, and may therefore serve as transparent model system —
their complexity and capabilities can be tuned by design — to study corresponding network dynamics, if not the dynamics of the
evolution of such network dynamics.

NCAs can still be difficult to train, as solutions can collapse into trivial attractors (especially with gradient-based methods via pool-
poisoning) or get trapped in suboptimal solutions that lack feature precision (predominantly in the case of neuroevolution training).
Interestingly, cues from non-equilibrium physics, i.e., from criticality and phase transitions [71,109,129,130] suggest that NCA that
are pretrained to operate at a critical state might be good "initial states" to learn further down-stream tasks. Thus, regulating NCA
dynamics to near-critical behavior might advance their capabilities for adaptability. Moreover, training NCAs to grow multiple target
patterns, and thus store multiple system-level attractor states in the cellular ANNs, proved challenging. Some approaches tackle this
shortcoming by co-evolving a multitude of initial conditions alongside shared ANN parameters per cell [7]. EngramNCA circumvents
this by introducing a two-fold developmental process of a private and public cell state that operates through different communication
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pathways [8]. Yet, extending the pattern-storage and cell-resolution capabilities of NCAs to compete with modern generative Al
techniques, not to speak of biology, is an active field of research [72,76].

This shortcoming is closely related to the fact that current NCAs don’t interface well: different trainings may lead to the same
system-level outcome but implemented by completely different microlevel dynamics. This limits modularity and compatibility across
multiple NCAs that operate in the same environment but developed not necessarily compatible communication strategies, and thus
limits the analogy to biology which all talks the same language of biochemistry. Neuroevolution techniques offer some insights into
transferability and evolvability experiments of NCAs [7,10,11] and EngramNCA demonstrates that even more biologically inspired
architectures — based on alternating public state updates and private gene transfer — can interface morphologies belonging to different
seed “genes” [8]. Yet, the learned update rules are still largely opaque black-boxes and difficult to interpret at the parameter and
interaction level; update dynamics don’t follow physical or biologically relevant ODEs; it is unclear how to implement reasonable
multiscale coupling principles in Hierarchical NCAs; in robotics, real-world experimental realization are in their infancies; and
improving our theoretical understanding in stability, conditional dynamics, and universality requires significant effort.

Increasing the capabilities of NCAs might even call for hybrid training paradigms, combining differentiable learning with evolu-
tionary strategies. Differentiable learning in NCAs, i.e., via backpropagation, can be highly efficient to learn task-specific dynamics
(such as target pattern formation) with high precision [1,82]. Evolutionary algorithms, on the other hand, not only offer a much
greater diversity of potential solutions but bring forth NCAs that are naturally highly robust against noise, corruptions, and show
enhanced evolvability and transferability to novel problems [7,9-11,18,19,57,58]. Moreover, different ANN architectures — feed
forward, circuit based, attention, recurrent, world models, etc. — might also strongly influence what the NCA can learn. Overall, re-
lations of NCAs with reinforcement learning, backpropagation, active inference, or neuroevolution techniques still remain underex-
plored. A promising approach to not only combine the advantages of different learning paradigms (gradient-based and evolution)
might be the recent conditional diffusion-evolution approach. This approach offers unprecedented quality-diversity scores, and
through conditional sampling even allows to bias different evolutionary lineages towards a multitude of target outcomes [88,137].

As already discussed above, the integrated multiscale nature of biological organization poses significant challenges from a
modelling and computational perspective. Hierarchical NCAs [10,11] try to overcome this obstacle by imposing a fixed architecture of
hierarchically stacked NCA layers of varying resolution (lower levels implementing the dynamics, while successive higher levels
exerting control over lower levels). It remains, however, unclear, how to best decouple different scales of organization, or how to
identify sub-groups of cells at certain levels that group together under different contexts. They suffer from limitations in storage ca-
pacity (of multiple system-level target outcomes, or functional modalities) and in scaling; simulating realistic organ-level complexity at
unicellular resolutions is currently infeasible. NCAs could learn from hierarchical reasoning approaches [138], from other
multiagent-based RL techniques such as [139-142] or the recently proposed TAG framework for multi-agent hierarchical RL [143].
Another promising architecture to improve NCAs capabilities are self-supervised techniques such as Joint Embedding Predictive
Architectures (JEPA) which are closely related to nested world model architectures [111]. In addition, it has been shown that a latent
NCA that shifts the computation from the conventional input space to a specially designed latent space — obtained via an autoencoder —
can reduce computational requirements while maintaining high reconstruction fidelity in image restoration tasks [144]. Along these
lines, a JEPA architecture integrated as an (hierarchical) NCA may enable higher cognitive capabilities by multiscale latent
predictions.

Moreover, their descriptive power, especially of biological systems, is still largely over-simplified: NCAs treat cells largely as ho-
mogeneous units and their numerical states and interactions are at best abstractions (or model composites) of most biological pro-
cesses. And while progress has been made, it is difficult to integrate (and identify) NCA dynamics with molecular pathways, gene
regulatory networks, or biomechanical forces. Training NCAs is mostly concerned with the accuracy of the final system-level outcomes,
largely neglecting energetic, metabolic, or other physical/chemical/biological constraints necessary for developing viable morphol-
ogies. Furthermore, it remains unclear how to map the synthetic cell states of NCAs to their biological counter parts, i.e., to physio-
logical properties of cells such as transcriptomic, proteomic, or other omics data. Notably, this is a critical missing link limiting the
predictive power of NCAs for biology, which, if resolved, would render NCAs as excellent first-principle model biological dynamics.
Although first efforts are made in this direction for the morphogenesis of cellular clusters [145] and the scaling of biological goals via
homeostatic principles [9], the problem remains unresolved so far, especially for complex, scale-bridging organisms.

Relatedly, it is an open question how, and at what scales embodiment manifests in NCA frameworks, especially when modelling
biological systems. If the multiscale competency architecture of biology is taken seriously, modeling through embodiment occurs at
every scale; and biology found a way to (i) generalize learning through evolving problem-solving agents, that (ii) are repurposed across
scales [6,26,28,117,118,123,124]. A key difference to biological systems is, that NCAs use logical units as signal carriers, while
biological systems use physical (or biological) signals; lower-level agents can become signals for higher levels, blurring the distinction
between software and hardware — and thus between computation and embodiment — in biology [27,34,113]. Still, NCAs pose a unique
testbed to understand how modeling and control arise across levels of organization, from intra- and intercellular signaling to
system-level morphologies and behavior. Clarifying what constitutes embodiment within such computational frameworks will be
essential for advancing this line of research.

Notably, NCAs exhibit self-regulatory denoising behavior reminiscent of diffusion models [77-81], cutting edge foundational
models of modern generative Al (e.g., Stable Diffusion [146] for image synthesis or SORA [147] for video synthesis, to name but a few).
Both frameworks iteratively transform high-entropy, noisy initial states x; into structured data x, by reversing a diffusive process.
While diffusion models are explicitly trained to predict and remove noise ¢; from corrupted data x; conditioned on a time step t — which
encodes the scale of corruption x; = x¢ + ¢; — they leverage this temporal parameter to orchestrate hierarchical refinement: coarse
features emerge early, followed by fine-grained details through successive symmetry-breaking transitions in the data manifold
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[148-150]. This enables structured, multiscale learning and reveals deep insights into the hierarchical organization of features and
symmetries in the (generative process of) data. In contrast, NCAs lack explicit temporal feedback and supervision; they do not receive t
as input. Instead, the dynamics - if at all — implicitly encode a developmental time through collective recurrent state updates,
effectively internalizing optimal developmental trajectories of the target system-level outcome via embodied learning. This raises a key
distinction: while diffusion models condition on time to guide denoising, NCAs must learn this temporal structure end-to-end from
spatiotemporal patterns alone, a significant challenge in capturing hierarchical organization through collective interactions. In turn,
future NCA architectures could benefit from hybrid designs, enabling them to emulate diffusion-like hierarchical denoising while
preserving their strengths in distributed, spatially aware computation. Such models may not only improve generative quality but also
reveal how biological systems achieve complex morphogenesis through internalized temporal inference and embodied cognition via
self-modeling across scales.

6. Conclusion

In the context of Al-oriented computational biology, we see NCAs as a model of choice. They integrate the biological multiscale
competency architecture, and their inherently distributed nature allows to model self-organization and spatiotemporal information-
processing systems for a wide range of biological phenomena including higher cognition [6,8,9,14,24,25,57,63,129]. By using
NCAs to simulate biological processes like morphogenesis or tissue regeneration, we can gain deeper insights into the underlying
principles of these complex biological systems at different levels of organization and how cognition scales following the principles of
basal cognition [26,27].

This relationship creates a positive feedback loop. By using NCAs to understand information-processing in cellular collective
systems, we can in turn apply these biological principles to design new Al architectures and algorithms. In addition, developing such
bioinspired Als may be beneficial for the problem of alignment. Indeed, we can build Als that are designed to be more adaptable,
resilient, collaborative, and integrate modularly, leveraging the distributed capabilities of NCAs. And in addition, we can use all the
toolbox of neuroscience and psychology to understand and interact with them as they will share the same multiscale competency
architecture we find in biological systems. This symbiotic relationship —using NCAs to understand biology, and using that under-
standing to create truly bioinspired Als (and possibly more aligned ones)— and despite all the challenges and limitations mentioned
above, offers an optimistic new paradigm for computational biology and the future of Al and computation.
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