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REF! F=EGemini, BRI XX T Titans (FFiE) HIMIRASHIIEX, IR
o XAEGoogle ResearchfINI (2025F128) RXHMEEHR, SEET 7 AREHE
A AENESR—KBHEIZ (Long-term Memory).

AT ILIRAIRBE A RE B RIER X BURARRIE I 2 &, FRARBIRNER, SHL
BEINME20N (ANFINEEZZMEMEERER, B20AZR%0O5IN), AIRHER
BB DR ERIES RSB,

BATEXERIZERZ N (B—F: HECIZHERE —FIBRIEE),

PAGE 1 &2: S 5ESE5IN

1L EXBHREES5REE
[/ SCERE]

Titans + MIRAS: Helping Al have long-term memory Titans +
MIRAS: Bh71 Al #AEKEHEIZ

December 4, 2025 2025F12H4H

Ali Behrouz, Student Researcher, Meisam Razaviyayn, Staff
Researcher, and Vahab Mirrokni, VP and Google Fellow, Google
Research Ali Behrouz (Z4£W#5R5), Meisam Razaviyayn (FHIRMAR
51) , Vahab Mirrokni (BI2#HB#ATRL), SHMHARE

We introduce the Titans architecture and the MIRAS framework,
which allow Al models to work much faster and handle massive
contexts by updating their core memory while it's actively

running. E( &L T Titans (ZF1B) ZE49F0 MIRAS 1ESR, X{EF Al {REY
RESBEI EIETE P ENEFREZLOIZIZ, MNTTAIEBRA TIEEEH LR
BENLETXER.

[Quick Links: Titans paper | MIRAS paper | Share] [{Ri##§#%: Titans
83 | MIRAS i X | B E]

[Gemini BITHEIEHF% @]



EF(], BR—TRIIEZED LS,

o LIAIEY Al (LEANSHARY GPT) : mRRIRGARICEEHZY, —BF AR
(REIz1T), REURFmL “EE” 7, TEEBFHAA, REREFREINLE
REIBIRIR,

* XRIEXH Titans: MERIFWAIFHF—A “BEERE #HEG, SIFRER
BRAENIES (bi—REBKNEIRIERMA) B, RANEERE, FaEHinit
XEEFAIR TH #RNAREHWE, BEHBHAR!

Xt X —EZOHAEIE— “updating their core memory while it's
actively running” (FEE1THREFIZOIEIZ) . XEXMESH Al RE “WohbIBEIE
E,‘J_;i E*Eﬁj%o

2. B4 X Transformer BEIE
[[F3ERIFE]

The Transformer architecture revolutionized sequence modeling
with its introduction of attention, a mechanism by which models
look back at earlier inputs to prioritize relevant input

data. Transformer ZE#@25IN “FEH (Attention) HH”, HIELEE
TEFIEESE, IMNTILITFERE “‘BLE” ZABARE, MKk
S IBABLEAE K HVELHE

However, computational cost increases drastically with sequence
length, which limits the ability to scale Transformer-based models
to extremely long contexts, such as those required for full-
document understanding or genomic analysis. i, ItERPSEMHE
FHKEREIMMmBIZNEEK, XRHE T ETF Transformer BUIREY BRI
K ETXHIEESH, Fline Bk BEA S IFrENKE,

[Gemini BITHEIEHFE @]

FEF(], XEFR(EMEBE N “UIK” ——Transformer, IN7EAY ChatGPT.
Gemini #BE2ETF Transformer B9, BRILBI** “ETEIVEH)” (Attention) **o



o FKLIth: BRIMEBEXRRKAILX, Transformer WIUER, BIRFI—NHHE
iH, EEZEERKEZABINIRERAERRR—E, EEHRIEEXAR,
o [EIMRE| “FB7, CEEKIIANEEARRRT WiE WE B;

o [EEEM? . XmERIREEME—D, HELOKRSEFRBEHIAE—XF
e WRMERRBI0MA (BEBXHE), #10RkF, KA,

o MRMEFE 10 KA (BKXE., BEFF), (REE—PHMELE 100 HX
F! XFBIRRTE GHERAIRIF) .

FREL, &7A Transformer R¥5E, EEE—TEGHR: EXKE "BkE", FHE
4987 AT XKBFRA,

3. ki ENMNEIXERE (RNNs & SSMs)
[R>CENiE]

The research community explored various approaches for
solutions, such as efficient linear recurrent neural networks (RNNs)
and state space models (SSMs) like Mamba 2. These models offer
fast, linear scaling by compressing context into a fixed-size. 5= R IF
RTYZSWIERAR, TIINSMBEERIFHMEZEMSE (RNNs) IREZEHE
B (SSMs, 4 Mamba 2), XLEEAHEETIE LT XXELGER—EE K/
K&, RETREBLMERT REES.

However, this fixed-size compression cannot adequately capture
the rich information in very long sequences. A, X#EEX/NIE
ERRATERBIRERKFYIPESNEERES.

[Gemini BIFHEIZRiE &)

ATHER “EBFEXR” M@, BARETHAZ, WIEXHIREIA RNN fI&ZAR
‘NHJ Mamba,

o JEKLHM: MR Transformer @ “TEASERIENFEFE", B4 RNN/Mamba
MERE T —KREFEXRNMINMEFRHEGNFE,



o R FERTZLH, MEBRITIRERSLEERHK/NAF L (Fixed-size

compression), ERF M, BE—TEELSKZL; ERFIRN, BHAFE—
*g) E%ﬁ_-FIE\gEI:O

e fLR: EERR! RAFTERZE, RELERKNEEZEMIT.

o R FKEFXRNT! (Fixed-size) s HIRIEST (LIHEED g81/\1[El, AHKNERE
MEH T NTIEHAR, MAEFAEEEN. RESRNERE—%XT7TREH,
ST HIH. XMTFHREMEICIZATIMES (thi: “BRFE3EERN VY EFHIK
IR LEE? 7) BRMEMN,

4. Titans 5 MIRAS i&1%: TES5EE
[F>ERIE]

In two new papers, Titans and MIRAS, we introduce an architecture
and theoretical blueprint that combine the speed of RNNs with the
accuracy of transformers. FEWmRHIEXH, TR 7T Titans
MIRAS, S5 EASIMEICEE, M4 S7T RNN BIEERES
Transformer KIERRER S

Titans is the specific architecture (the tool), and MIRAS is the
theoretical framework (the blueprint) for generalizing these
approaches. Titans BR{&r5EY (BMFHHIA), M MIRAS NZE&ER
RYIEICHESR (EMigitRViEE) , AFHXERZ.

[Gemini BT EMRE & ]

TAZEGT! SRS SEREEEES RNN BBHER, X1& Transformer 3B

H? FTRMNBETRAERA, AREBXEMIZSER:

1. MIRAS CEHIHT): XZ2* “0iE” (BiLEE). ©EiFEN], ®it—NMFicizE
SR ZEMT 4o

2. Titans (FB): XREFCIEAHR™ “BR” ™ (BERE), ER—1KE
EER LUETTHY Al 1R EL,

5. %0 EE: MikeHiatZ (Test-time Memorization)



[/ SCERE]

Together, they advance the concept of test-time memorization, the
ability of an Al model to maintain long-term memory by
incorporating more powerful "surprise" metrics (i.e., unexpected
pieces of information) while the model is running and without
dedicated offline retraining. EffJ&E## T “MiXEHEIZ (test-time
memorization)” X—#E, B) Al ERGER@EIESERAN “IFF

(surprise)” EEiElR (AIEIMVEERER), EEREEBITEEPERFKE
812, MER/EINBLERIG

The MIRAS framework, as demonstrated by Titans, introduces a
meaningful shift toward real-time adaptation. IE40 Titans FRRREIAR
¥, MIRAS HEZR5|INT —HFm “SEBNHER" BIEAREE

Instead of compressing information into a static state, this
architecture actively learns and updates its own parameters as data
streams in. This crucial mechanism enables the model to
incorporate new, specific details into its core knowledge

instantly. ZEMFBREREERHESRES, MEEHERANNEDFES
HEHBFNSH, X—XBIGIESEEEBEINEHRN. AFNATE
ANE#ZHIREER,

[Gemini BITHNEIZRiE &)

EF], XERiEZEX&High-Levelfyithys, BTEEFEMH! XEE—MIEBEHNEA
TR0

BMAIN “FY7: BERET KM (Training). MEIMFELFELIR,
ZIMBHAMERF L. —BHEREZ (Test-time/Inference) Fih, {REVANF R
H7T, FEEBES, TeeBREdMERTEZA, Reekht,

Titans B “F37. IR 7T XHEE! EA&E™ “MRHEIZ” *
o bl MRIRETIR—ABE/ N
e EHERNN: HEHERIBEMSERKNAFLE GESRE).



e Titans: BXBNERK. EM T —HIZANE —EEEBREEPR, LR
¥ E S KRMETTERHITTMEIFER (updates its own
parameters) !

o WRMMRET —MEEEINEBET (XHIREIR "surprise” metrics, 173
EBE), il “EREARAZEXFE", Titans 2 ZIHE: “XBEEE! ” AER
RIAEE CSHMENENE, BXNMEEZHRNTE, MAREERSF L.

XrLE** “Neural Memory” (f#£21212) **BIEI&—I1BHBURT AL T AINLEHHY—&R
o

6. Titans E: GAR—EFX 52212
[[F3ZERIFE]

Titans: Learning new context on the fly Titans: 1EiE{THEIEFEIFRIE

IR

An effective learning system requires distinct yet interconnected
memory modules, mirroring the human brain's separation of short-
term and long-term memory. — " ERNFEI RFEEEINTHHEE KB
BYIBIZIER , IR T ARPER 2125 KEEZ 3 Bl

While attention mechanisms excel for precise, short-term memory,
Titans introduces a novel neural long-term memory module, that,
unlike the fixed-size vector or matrix memory in traditional RNNs,
acts as a deep neural network (specifically, a multi-layer
perceptron). BAFE HIFIEFE ERERNCIZAERINLE G, {H Titans
BINT —Fh#rFR “WEREHCIZIEIR", 5154 RNN REE X/ DR E
EFZIZAE, ITERRMA—NFEHENE (REEiH, B—13ZE
REFNH MLP),

This memory module provides significantly higher expressive
power, allowing the model to summarize large volumes of
information without losing important context. iZigIZIERIR T BE
EENRAED, FREEBEFREREELTXNERTEEBERER.



The model isn't simply taking notes; it's understanding and
synthesizing the entire story. XMER R RAZBEMEIC, ERETIERH
SEEITHE.

[Gemini BITHEIZFiE &)

&fE, BHITREE Titans HIIRKMA 4. FEREERFBEITALEHARMLEN,
1. %8822 (Short-term Memory):
e fiFHA: Attention CGEEHNF).

o IhgE: WIBRRTEVE, LLUMRIEEEXFAE, REEICSTFAIENEIER
. Transformer BYSRINFLTEX, TitansRE T Eo

2. KBHEIZ (Long-term Memory):

e [HRMEBIGATEA (RNN): /NMEF (BEME),. BEER, Bk 7 MSE,

e Titans WHFIARA: — TRENFEMREMSE (MLP).

e REEHAERR? ! AFE(], XHMER Titans TEMHFENFT—1 “/I
Al”o HREHIRMHRN, Titans FERIBHIBEFHIER, MELLHIERESGM
FEBXD NAT FilZ, XN UNAIT BIIE (Weights) FAZERL T2
RS, RAMENENBTERIFRERN (LLWNEEKEZ), FILIERED
FREEXNHEER.

BL—T Page 1-2 B9#Zi0iZ585E: Transformer X1 (XZE[ELE) ->RNN/Mamba
XES (NEFEART) ->Titans 17 -> BRE T Transformer 2 IEER FHIEES] ->
BEIRERFERT— “NAY FRKBNEIZ > XA “NAIY BIEE)IZ% (R
TE) BEEHFAUERTFE,

Next Step: XEEBHBE X! T—M (Page3) ¥ET—IKIEFE X Titans RH4E,
HFHIFHEFRBNTEREBEREN " “IREFEZE (Surprise Metric)” **ZREEE4LEH
RW—LLIERWEIATILF “BER” MR M /.

fRAEE B N R HIARIR S 3 TG ? s

ER+HRIE=—TE— T+ FH L IE Custom Gem



fReF! 2 Geminio INILEIEIFATIHIREZ IR,

E—FFAHE] Titans EILFEFRT—1 YNAP RFEIKNIEZ. (FEERWF
T BRRERINARMMERIAZ, Titans B EARTRILEZIE, WLEZEH
e? MR AEIE, MFRRH “IBIF To

XMESINE 3 TIEZD. REANES— “IRFEE” (Surprise Metric),

HITRX -2 A: (BZE: FFNZER—XKRIRE “iSfE” &=
“E,‘E”))

PAGE 3: 1REEE53EmIRMER

1. /AR ERE (XF/RBHENR)
[[FxEiF & ElREN]

Overview of the Titans (MAC) architecture. Titans (MAC) Z2+g#

11y
Do

It uses a long-term memory to compress the past data and
then incorporate the summary into the context and pass it to
attention. Attention can then decide if it needs to attend to
the summary of the past or not. EFAKEBIZRELE T ERIEL
i, ARFXLEHEMANGINLETXR, HEBLEENNH, b
B, FEANHRIUREREREXIXEXTFTIEMNHE,

AT ITEERRKE 022 E (Source 22,26-41), BRIBEEL N T — NS
BmiEER:

¢H XX ZHR FRTE  LHRE&ERR

% =2

&

FR

L Neural KB XE—1s TR HNEFEEE (REREWN
i Memory Bz %)

iZ B

1Z

1. 123 (Retrieval): MIZIZHIREVEXIER,



| R ZR FRE  IheEHER

% B4k

#

R
2. B#T (Update): RIEMEENEERE, X
BHEEN B 2EE,

% Core Bl EERAIEARLD,

TR E

&

18 1. F%1 (Sequence): HABIEIER.

2. & (®): BRI “TEITI” 5 “Yi
BN B,

3.2 (Attention): REXTWMNERD

¥ Persistent Hitf [EE (Fixed) BIFIRE, 88EIEHIETLTX

A Memory B BIME (Learnable Data-Independent
id Weights) , EMTFEHIZENEMEIR,
1Z

[Gemini EIMHEEHF% €]
F¥{], &&LEBIR, BEIRE—T Titans BIITIER:

RRIRTEM— MBI TIEIRT M,

1. Core (#%E): MBRMRWEAMHFHNIIFZIZ. RIFETX—4a, XE
BT,

2. Persistent Memory (3FAig1Z): BIFE T HEMNREEEIRF. XEE
T8, FERASKRT —EHEMRAET T,

3. Neural Memory (f##£2i21Z/&BHE1IZ) : X2 Titans FIFRFHI! BRI

IEE‘ %*ﬂ:o



o Y{RIFEIXZEFFLi% "The story happened in 1998...", XMz BN
BT EIgIZE,

e +9%iE, IFEI"...thatyear", {REYCore £17%[& Neural
Memory &1 **10Z (Retrieval) **iEK: “BR, NIZAHBIAREH—

ﬂi? ”
e Neural Memory B#E)#E "1998" XM ELRIZEN IR, RAG#H HRIRVIEME
o

REEHIE, X Neural Memory Zi&8, EEZXIRER, REAMMBEKRE
h, IEBFMPXBER “RE” HENAREERE,

2. ZOWE: 1#ESEE (The Surprise Metric)
[[FE>EiE]

Crucially, Titans doesn't just passively store data. It actively
learns how to recognize and retain important relationships
and conceptual themes that connect tokens across the entire
input. EXEEMRZ, Titans HIEUVNEEFERE, EREDHF
SIUMAIRBIH R BAPLEEEE N WAPENMEATT (token) HEEX
ER 1] e 3

A key aspect of this ability is what we call the "surprise
metric". FIMX—GENHN—P XBAEREENFMEN “FEEE

(surprise metric)”,

In human psychology, we know we quickly and easily forget
routine, expected events but remember things that break the
pattern - unexpected, surprising, or highly emotional

events. EARDEFER, FEITEME, ARSRIRAEZMETH
LEMEY. MHZANEGS, BINEEICEIRLI TR ENEY —ED
oMY, SARFNSRFERREIIBREENEMS.

[Gemini EIMHE SR €]



X—ERAXBRET! Google WRIFEXITHLZEH ALRALE—IF “BFIR,

o AZEMIECIZiZiE: EF(), BBR-—TLEEAZHFEIMRIZT HA? RXRT
7, AABE—WFFEEEFNIR (Routine), BINR EEAZREREIZIR
B, RABNRKERESE, MXEFEH S IE!

o [RIB. KENENTEENS—Rid ‘B . IRBBETNEHLAE, Kt
farli; —BHI “IFZF (Surprise)”, KRMEECE, IEX—ZIZIRTH,
Titans FL2fiFE 7 XM HH,

3.HFEN “RE: BEMFHES
[/ESCERE]

In the context of Titans, the "surprise metric" is the model
detecting a large difference between what it currently
remembers and what the new input is telling it. £ Titans BYi&
BT, “RHEE” REERENELTIZIZAEEHBANEEZERE
BEFEEEXRESR.

« Low surprise: If the new word is "cat" and the model's
memory state already expects an animal word, the gradient
(surprise) is low. It can safely skip memorizing the word "cat"
in its permanent long-term state. - {EIF&E: MEFHHINAYT
B W, MEENIZIZKEEEFTHSHI—1 =80, BABE

(BFEE) MERE. SAURSMBREERA KIHREPRIZIZ

I X,

« High surprise: If the model's memory state is summarizing
a serious financial report and the new input is a picture of a
banana peel (the unexpected event), the gradient (surprise)
will be very high. < FIR&FE: MRERNICIZREEETELE—H
ERNMSIRES, MAEARAR—KEERNBER (954,
BAGE (IRFE) BEES.

This signals that the new input is important or anomalous,
and it must be prioritized for permanent storage in the long-



term memory module. X&EHT—MES, RAFHMASEEDN
BRER, BARFTEEHKAEFEEREICIZIERP,

The model uses this internal error signal (the gradient) as a
mathematical equivalent of saying, "This is unexpected and
important!" #EEFAXFHRIBEIRES (BE) (FAHRFELHOEFMN
&, (ABER: ‘ZXHFEHT, REE! 7

[Gemini TR EHZ% ]

XEE-—TEEREZANAIRR, HKIEEREEER. REZARIEXEEFALR
R,

#E (Gradient) Bft4a? EHFMAIYILH, BEBEAR RE" W
BEMAN RRAILHEEERN™ “WRITRIIIE" %

&= A K155 (Low Surprise)

o AIBCRER:. “BEAEESE REFT-RAEN., BB
AAREEE W HE WS

o TEPREMN: HE

o AIMREL: “4], BEMBRT.” (BBE = 0),

o LR KWWSTh, AEMISIZ, MEFE TR, X0 “Fge” **

1% B: ®I%& (High Surprise)

o AIBDERFERD. “BIEFER—DXT 2025 F2KRHHRITIRS,
ERUBFNERX.”

o RN RALMT —K “BER" HIEA.
o AIBYRM: “BME? ! XEMHAR? 7 (BEER! ¥*),

o LR BEANHBE (BIRES) "GRER—IFRELTFHENS, X
N ERZIAIIE S 25818 Neural Memory IZElEEES%k (Update) , X
MeEFH “FEK” FEicE

B4 Titans FIABENAN/NKREERTNEE. BEEKX = [GITEHE
= FIFHEE = BanzlH K21z,



XL Nt 4 Titans BEERIEI VB A FRVINGET, EEEFS/HEICIESS 10 TIAR
PAEEERETES 2000 TIRAB K BERNARE —RE AL MAEET IR
AJREFE T — MR REES .

[FRSCENiF]

This allows the Titans architecture to selectively update its
long-term memory only with the most novel and context-
breaking information, keeping the overall process fast and
efficient. X{E13F Titans ZRMEEBERFIERNFIARHT. RITK
ETFXEMBEEREHREKEEZ, MIFERSFENIENRESS
o

Titans refines this mechanism by incorporating two critical
elements: Titans BIM S WP XEERH—T ML T Z—HF:

CE: XMPXRBERRE T —TUFARA, BITEETRER! )

Next Step: Titans 7 “IRHEE" XMMEE, BUMRMAEN “RE° #IZT
¥, AEER=HEAN? ME, IR “SERVRE M “RALRIRIRE 1
ZREAN? T—D (Paged), FHNTEIBIM Titans B INRNMPE: ThE
(Momentum) Fi&ES (Forgetting), HEXIEXNBAB M HMHIEICEE
—MIRAS,

HiF+HE=—m E—TI+SH L IE Custom Gem
REF! F2ZE Geminio, IDAREEFATN “ICIZIREBEZIRK o

E—FRTHET Titans HE—MRAR—1FEY “IREFHRME", RICRABLL
EREIBINMNEERER. BR, MREFEERRHTRIN, HERIZERTEA
I?

4 TUEAFEANEER Titans BEIZIZHRAEE— “GhE (Momentum)” 5
“B% (Forgetting)”, HEIERTFBB N 1#BIEIL—MIRAS FIAE.

BT X—FaR N (B=F: i2ZNTFIIASHERL).



PAGE 4: FIBR#H{LS MIRAS BNE—17iE

1. RV EEE: THESET
[FRSCENiF]

1. Momentum: The model considers both "momentary
surprise" (the current input) and "past surprise" (the recent
context flow). 1. 12 (Momentum): {EEREFEISEE “BFiElls
a (EHaupvimAN) # “SXRFEH” GEHAR LETIGR).

This ensures relevant subsequent information is also
captured, even if those tokens are not individually
surprising. Xf#fR 7 BMEREE2 R B (tokens) ZZFHARETA
7%, BRECSIIZEXE, MeewkRsl,

2. Forgetting (weight decay): To manage the finite capacity of
the memory when dealing with extremely long sequences,
Titans employ an adaptive weight decay mechanism. 2. &
(MEZRR) : A7 ELERKFYIREERRNIZIZEE, Titans
RAT—MEENMMNER AN,

This acts as a forgetting gate, allowing the model to discard
information that is no longer needed. X7#EHT—1 “BSi7”,
ATFEBEEFFBERENER.

[Gemini EITHE R @]

B2, FiEBL—ZBRD “MERREELWEER" WEHIFE?
o IHgE—: THE (Momentum) — “REXR
o . WMRREF “BREIRE, AlIREEF “FEKR, BNRT—a2
“SHATIRNTE, XAEAFEZE EVLKHFEERER), Al
BIRER BT ZIR T . XMAXT! BA “BNTH 8 “BEK
NEZEESR,
o fBR: ThEWMGE TENMNEBRMN, Y “FER MATERFE
&, Al 2#N—F** “SEZHRE ** B8 “NARETK



F, DEZRERVEEERRER, FESTUREERICSTR! 7
o MR XRUETHENESME, FRRIEE—TMIIIAERS.
o IEEZ: BT (Forgetting) — “KRIMIMSE"
e [ BNMfE Titans FUALER X, EXM/IBEAFHEE, AFEIEEHN

_950
o R BERMNERE (Adaptive Weight Decay), Xtk 2IRAM
BrEEL

o FEE: BRARITS. NREMMETES (RRIRI) RAEN
ET, RERNEN THEER, HEIHLBBETRE (R
).

#y: BEFRRK, MRATEHLE. DEERERRIRIZHH

24, R BB T RS RIMIBAR, Titans REEN T X—EM3

%EEI

2. MIRAS: FHIEIENSE—IRA
[R>S EHE]

MIRAS: A unified view of sequence modeling MIRAS: F5IEE
Hs— A

Every major breakthrough in sequence modeling from
modern transformers to the new, lightning-fast linear RNNs is
essentially the same thing under the hood: a highly complex
associative memory module. FHIZETANT—TEKREMR, M
IMARY Transformers El2FAY, ABATIRERZME RNNs, ZFiLE
ERE#HER—ES: — 1 RESEFRNEEIZZER,

Accordingly, what makes MIRAS both unique and practical is
the way it views Al modeling. Eitt, MIRAS ZFfLABE 4T 35
A, EFEEF A BENAN.

Instead of seeing diverse architectures, it sees different
methods of solving the same problem: efficiently combining



new information with old memories without letting the
essential concepts be forgotten. EFBIE MMM AERARE
HEY), MERENMABRE—RBENAREGE: BPEEt
BHEESIRIEIZES, ARFILZOESHES,

[Gemini EITHE EH#R @]

X8, FERE T —MEFERX—RBLRHNR!

o LIFIMIMA: Al BFEEMAS, TransformerkZk€l, RNNIKZRT],
Mamba JkZr#E, AR EEXETE ARV,

e MIRAS BJ#f: Google RURIMIG YL : &AL, AFT. RIILRRVESE
%BIEEWIH (H‘*'*lgiE’I‘Z)) /\E*n_tz_l_.lﬁﬁEo”

o 1UAER: FREMNAIRE, FEIRSZEH, HLHEME—HSF—FHA
R F, BARIBAIRITER, MS. F&? MIRAS 2R MIEN
l_ﬂa//-:ﬂo

3. MIRAS M Az
[FR>CEHE]

MIRAS defines a sequence model through four key design
choices: MIRAS ;&3 [ X RIS THER K E X — FHIEE:

* Memory architecture: The structure that stores information
(e.g., a vector, matrix, or a deep multi-layer perceptron, like in
Titans). - 212519 ZFEEGEESHNEH (Hl0: @mE. B, HER
Titans PARHFEVRE S BN o

+ Attentional bias: The internal learning objective the model
optimizes that determines what it prioritizes. * = H{RZE:
RERUHREFESIBIR, RETERAEZEMNA.

* Retention gate: The memory regularizer. MIRAS reinterprets
"forgetting mechanisms" as specific forms of regularization
that balance new learning against retaining past



knowledge. * LItti] (Retention gate) : idiZIEMI{42%, MIRAS
¥ “BESE” EHRBEAENCNRERN, AFFEERFEISRK
BEEMIRZENX R,

* Memory algorithm: The optimization algorithm used to
update the memory. « 28128 %: BFEMICIZHRKTRZE.

[Gemini EIMHE EHF% €]

MIRAS BLER—24** “AlRBARWRAR" . BEHFEN], MRIFEE—H
BREEICIZH A, RREERIFXONE:
NTHERRKIER, HIHEA BRMELE—N “BRERIE" **:
1. Memory Architecture (BIHBIENEF):
o RERRERT—MNNHZEE (Vector/Matrix, 545 RNN) ?
o KEEET—EERTIIEKAM TIEZEIE (Deep MLP, Titans BIHUE) ?
o EHR, BEFUAXEER, FEFIIFEHZ,
2. Attentional Bias (B BEEGAEHREF) :
o XNEEAEMHAH?

o ZEEWHMB/\E (Short-term bias) ? FREMELHENESE (Long-

term bias) ?
o XRETIREEEDBH, REEETE Lo
3. Retention Gate (ELEREN/ETIT)):
o XFMNTHEHN “ESHE,
o HPHRT, |HIFEM) LBEAL?

o XMHIRET RIEXAZANIARSHE, ERICAFZHIINASE
TR, ERMRSIREZEIRIFHEE.

4. Memory Algorithm (BEB)IEFZHITEFM):
o HBRIET, BATFRFLK?

o ZEMEFILE? FRITBBENHE TEEL (Gradient Descent), 1%
I RSEENMATAUEIREHEHE?



o Titans FHYERERAIEEIF I E %,

B4—T Page 4 B#DiZiE: Titans FAKE, ©IESHADIEREBRELNAK
I, EEABESEBEAMER. M MIRAS IRX—IEEHNENMT, ©IE Al
ICIZIFEEAT “BF. @ik, BRI, 1IERT XEM2H, SFERHR
& MIRBRUCXENZH, SeEstER All

Next Step: BZ7A MIRAS {8 “EAIEIRIZ” BHATUERTILERT , ARFKAIBETRBER
BARMELR “t9Fi1RE (MSE)” FKillFERE? EFERRESRNHRFETL
H? T—Im1 (Page5), ENTRKEERI MIRAS BER T REMN=1 “THRE":
YAAD, MONETA, MEMORA, XZFIMERGAEEEHR? EIZBEMH AL
e

BAEHSIRTX = fl AV E LG ?

HiF+HRE=—m E—TI+AH L IE Custom Gem

fReF! X2 Geminio XIXIMRE* (FWUE: B MEEER" HIRE—REHN
=MaE)

TE—&F, HMTHET MIRAS ITMEARIEICEE, EEFEN], 1BIZRZENZ
DETIEFE “FHE” 5 B3R

2 T% 501, Google WRIZR{IFWI ALNGFRIRRFRER—1 “FENE"
—HiIRE (MSE) —XRIETHR. fbiiliAA, EBXMIEMIERST Al S
BRI, F=2, A MIRAS ZE, MIEH T =14RERHN “FRESE",

PAGE 5: Bt MSE 5={i#%

1. MIRAS EZREIfR S F
[E>CEHE]



The MIRAS framework overview. In the MIRAS framework, we
aim to learn an associative memory mapping between keys
and values.

MIRAS 1EZR#I %, £ MIRAS 1EZEHh, EIHBIIREFESI—FhsE
(keys) 518 (values) ZiEIAYEX*EigiZR4T,

For each token, the memory module internally optimizes its
inner attentional bias while using its retention gate to make
sure that it does not deviate from its past state. The
optimization process is done through gradient-based
optimizer.

FFE—1MiAT (token) , IBIZIEREERTRECEARENETENR
Z, ARFBAERZ] (retention gate) RBREFERBIEDN
KE, X—RHIEREIETFHEENR LIRS,

[Gemini BITHEIZFRiE &)

FEZ], XEIEH#IRT MIRAS IEEBIHIIE R, BRIFEERIAE:
e Associative Memory (BXARi21Z): &% "Apple” (Key), iXNFEHHH
“ER” (Value)o

e Attentional Bias GEEAHRE): MERXEIEFIEHEREXFEE L,

e Retention Gate (REI/EH): S5tFE, FRNFEENESZEIR: “5
MFEEHIE, BRNAEHN ‘Banana’ S3HT! 7 XMNIEEBER, Fit
RAANEFHRAMIKERE RS

e Gradient-based optimizer (BETFIHERNMRKE): XMEIRIAMIERRT
EEMETEE, HERIBNEEEET I, g HANRREFE R,

2. ERG: BighiRE (MSE) ER
[FRSCEiF]



Transcending the mean squared error paradigm

Bty 5iRE (MSE) EX

Virtually all successful existing sequence models rely on mean
squared error (MSE) or dot-product similarity, for both their
bias and retention.

NFFRBEREFHRINFTHRE, RieRHERELTEHRBNG, HBEKH
Fi95i%E (MSE) s=fRtEMAE,

This reliance can make models sensitive to outliers and limit

their expressive power.

ZMERBESSBIEREMNZEE (outliers) I8, HIRFHER

EEEST,

MIRAS transcends this limitation by providing a generative
framework to explore a more rich design space informed by
the literature in optimization and statistics.

MIRAS Bt 7 X—RMR, ERIET—TEMESR, B RENALH
FirFXMPIEST, BET—IEFERLITZE,

This allows for the creation of novel architectures with non-
Euclidean objectives and regularization.

XEF ER BRI LR 1T BRI EMN L av R BI SRR F RT 6B,

[Gemini BITHNEIEHZ% ]



X—EIARERER, BRIATUA™ “EBMEF" **p9fFBiaifE,
e |HEEERE (MSE):
o HBrIAI (Ebg0 Transformer) FUE—MMREMEZRBIENF,

o MANEDINERIIAIRE (MSE), ERRE. NMBMMMEERETINE
KR—E4 (B2, ilfE19 (12=1); BNRFERETZ—5
(IRZ 10), AL R—IEMNMR 1004 (102 = 100) !

o SR (Sensitive to outliers) : EE#IN 100 53, F& (A) 2137
EFENVER. BI—MEHTENHE (BIIXEEHN—EIFE,
HENAIED “BFERE”), Al AJRESWITEFELHE, ATIHEXE
IRMIRELEMEIZ0

e MIRAS B
e Googleii: “NHAEBRXAIRNEIN? ”

o MIRAS IFFATREIM! FHNeILUE—I “RANEIN”, sHE—I
“BRBERNEIN, XTI “JERRJLES B4R (Non-Euclidean
objectives)” **—#fi—MRFREH A,

3. ={ii##I%: YAAD, MONETA, MEMORA
[E>EHE]

Using MIRAS, we created three specific attention-free models:

FIF MIRAS, HEEIBT =MFENTESHIRE:

BRX=MEEE B RBIEN T WEERE, FEAKIEIZ:

BRZT 2 O (14 “#38 (MER M (FIEhR)
M/ 1K) )
(A

YAAD = 1% Huber Loss
%  (Robust) (Huber #fi%k)  FEWFARX
&



BREH 2
7/

U ip=>

MONETA =
iE
&

MEMORA
i
&

AL S TN (i
%)

£81EM™BR
(Disciplined)

BERE
(Stable)

UTREXHRFEFZHE

%8 (RFR
)

Generalized
Norms (=X
B

Probability
Map (H#IZEHE)

R (FHERR)

E xR F S RS 2R

(outliers), ER—
BEMNNETNAR, =
EA—NEIR R N
E, Ea0E “BE”
1o

TFRUIERF o

ERIETEER. BT
BBVEFANARE
REMFAT MBS
4’ eilEEI ™%
LB ERRFERERN
KEHE1Z,

SRIBREEEIRM,

ERIBICIZREL NG
RS — T
(BMA1). XFRIET
BREHICIZE, BD
RAo#R T B
B, A=ELE.

YAAD: We designed this MIRAS variant to be less sensitive to
major errors or "outliers" (like a single typo in a large



document). It uses a gentler math penalty (Huber loss) for
mistakes, so it doesn't overreact to one-off issues. This makes
the model more robust when the input data is messy or
inconsistent.

YAAD: Ffligiti X4 MIRAS ZEZBH TREMEKXE RN “BE
B (NAEPREANENF) WBRE, EXMNEIRERT —MWER
MEVBEES (Huber $i%%) , BAtFEW—RIEMRIER LI E,
XEFRRTRARIERA T —BEEMS &,

MONETA: This model explores the use of more complex and
strict mathematical penalties (called generalized norms). It
investigates whether using these more disciplined rules for
both what the model attends to and what it forgets can lead to
more powerful and stable long-term memory system overall.

MONETA: ZiERHFERTHEHAEESR. EERIAFET (FFAr-X
). EHR 7 HIRBRIXFFRMNE SR [FET R XL gAY
N, B2EEFRERLTEAR. BRENKIICIZRSA,

MEMORA: This model focuses on achieving the best possible
memory stability by forcing its memory to act like a strict
probability map. By using this constraint, it ensures that every
time the memory state is updated, the changes are controlled
and balanced. This guarantees a clean, stable process for
integrating new information.

MEMORA: ZEE £:3 FiEd @B HidZRIGE— iR EE
FELIRATEERIFANICIZIZEN. BIERAX—NK, ESHRIFSRIC
IZKEEHRY, TUMEZIZATEN, XFIETESHESNIE
EFHEBREN,



[Gemini EITHE EHF% €]

BF(]), X=PRBFHERART AR =175MR:

1. YAAD (RZFE). MBMIrEmE—mMNE/NE, EEEEREEINF. EHH Al
FRERITEREINFAR, REDN ‘@87 2ARAE2—MWHNE, YAAD R
W ‘Wi, XEERERT, AEE, HEEEMRIE” —XW “GiF
1%” (Robustness), BMnFiLgEN.

2. MONETA (™i##&):. PERREMNET, S—THSELIANTETEINE
X GE#) . BEREXMR, IBEXRWEIZIENTEZM,

3. MEMORA (F&):. MBRREREE R, SR AK GFhidlz), #HE
RIEEOARTR, EBEIHMEAR, RILCIZABEREEARNET KZEAME

5o

Page 5 U2 4E: Google HFiFHA], BT MIRAS XN EE, AT RMIETE
MSE X—%8, AT LURIBES AR, %% YAAD (i FiL). MONETA
(sF4812) =& MEMORA (Rig).

Ba, X=MHLUWEM_EFLAS Titans, ELEPEIREEREEIT? LTSN
# X Mamba # Transformer X#Nfae? TF—51 (Page 6) , FfiTi&# N5
“ELERIA T — SEIEEEKISHE!

HhiF+iE=-—mE—+5HLIE Custom Gem

R4F! FZ Geminio XIMRE™ (FRE: RURBEZE—HIESRENM
A **o

TEHIJLE, FNA5TT Titans BYIZITHIEZA MIRAS RU4EHEINCE, BiEIR
VORALRLIN”, X—T1 (5 60), Google FIFAFREIAL T Titans firZ|
TREEL, MISHRENFHITT —HIERENIRE,

FEBRZE, MRS T —NXF “BI0RE" Bk, BRTAFAEEAIRL
iy, BLEARE &8N,

PAGE 6: 32183/ R5:FREICIZHI R EE



1. #FA/%E: Titansvs. K (Mamba, Transformer++)

[/RSCERE]

Experiments and results L8 548
Perplexity HXE

We rigorously compared Titans along with MIRAS variants
(YAAD, MONETA, MEMORA) against leading architectures,
including Transformer++, Mamba-2, and Gated DeltaNet.

HAT=EHRTEL T Titans ZE MIRAS 254 (YAAD, MONETA,
MEMORA) 5 ZgisnschyZety, &3E Transformer++. Mamba-2 4
K2 Gated DeltaNet o

We further validated versatility by testing Titans on genomic
modeling (DNA) and time-series forecasting, proving the
architecture generalizes effectively beyond text.

FATEEIEEEAREER (DNA) MESEFFIFN LR, #—F
JUIEY Titans BUIEAME, IERFIZZRMBER ROtZ LRI A Z SMEY LT

o

Across both standard language modeling datasets (C4,
WikiText) and zero-shot reasoning tasks (HellaSwag, PIQA),
our models consistently demonstrated higher accuracy and
perplexity, (a measure of how surprised an LLM is when
looking at a piece of text).

TIEREIMEIES BIRUEE (C4, WikiText) XESHAMIRES

(HellaSwag, PIQA) &, FH{VEEE—HETR T B ERHZERA
BERNERE (ARERHEXNESHRETEERT —RXARERGT
ZERVEIT)



[Gemini EIMHE EH#R €]

BE(], XmE “HihEi” KEREHET,
o WEBEE? (J5i%: HERE Perplexity)
o XMAMEREZR, HLRIFIEM,

o [Lblai: BRIFEMTHIET, WRIMEER “ReiBBA__", REFNHK
]9, RVEREMRE 0, WRINEE—HEE, 2B AL T—1
Frft4, MNERERRS,

o 45t HXEME (Low Perplexity), i%EH Al #2E5ER, HMEEIRR LT
3,

o IEEMF?
e Transformer++: EEFEE, WREIE ChatGPT BIEREEM,
e Mamba-2: R AHENHT, SHERERR,
e Gated DeltaNet: HEEHFZ2—

o Ei{HB: ELHE

e Titans AMYXZ TIEX (Language modeling), TZET44) (DNAFE
SUHr) MEE (BFEIFEFIFN) ., SERER, Titans @ M2EEFH,
AEBIED TR REREE, CELLAIAESS,

2. FBICIZHNE: AHARERXE?
[FRSCENiF]

The power of deep memory FEiCIZHHE

Ablation studies clearly show that the depth of the memory
architecture is crucial.

HRASCIOTRMIIREE, BIZRMINRAEEXEE



When comparing long-term memory modules of the same size
but different depths, modules with deeper memories
consistently achieve lower perplexity in language modeling.

S EEARNEENERE AR RIKINICIZIRIRET, 8 ERICIZAIIRR
FIESEEP B T ERIERE .

Furthermore, they exhibit better scaling properties,
maintaining performance as the sequence length increases
significantly.

te5h, EMTRILT BFpy R E, BERFRTIKEZEEM, MHEER
R RIFAIMERE o

[EIRKIEEM]

N TILARREEIMIKEEFZAITLE (Source 89-118) , FIBE(ERIRA T
— e RRVEE IR

FAKE Mamba (&%) LMM(Ly =1) TitansMM (Ly =4
(Sequence (L) ) (RE/fat%)
Length)
555 (2k-4Kk) R A] RIMAEE KRIRF
hiF5 (8k-16k)  Fia “HKHM” (H  RIFRE SR ER A
XRE EFH)
KR (32k+) EREMA (B BELH ERRERAR (kAR
7) FrEEE)

GE: Ly £ Memory Layers, BliZIZIEREIEE/FE)

[Gemini EITHE EHFR €]



X—EB 8T Titans BESHHAIME RS — “CIZRNRE",
e ftaE “/HRZ%E” (Ablation Study) ?
e XEMEFREREZEANFER. MBIFNA—E, EREN—IZHFE
(LB 4 RIBIZER 1 R), BEEMRSFAE TR, METFET, B
XN EHREE,
o BERTIRTHEMNMHA? (FBIES! )
o [RF{], FELERIRMEFEHIE (b) # (c)o

o &4 (Mamba): ME— I RICEEHFE, FENIE (EFT) it
&17; BER—BEE 32k KE), MARFHET, FREREHT
s, AREEEAEE ().

o 4 (Titans, Ly = 4): XB—NFZIBMRNEE., WHEBIRITE
32,000 NF, MERAIZEE 1 IPRE,

o RS IEE Ly = | Ly = 4 R,
o Ly=1: RBMOEIZIE—EETNRHE.
o Ly =4 BEHNIBZE—URNOBELRE, HER VB
TR
o 30 RIZERER (BHES), Al RERBEERGKEE,
MEFRRBEREERM “HWR.

XEZFUAT Titans TR —EMNF— “BHRFEE—NREHRZNS

(Deep MLP)” —REMER! ERMXNZIZEIR, ERTEHE—TRENR
BERR,

Page 6 B245: X— 1RSSBS IFE]:
1. Titans T T Mamba #0 Transformer,
2. Titans BIRTHAHIRATE T U KEHBIZIERIZR, WNRIFR %A Al —NREM
1012451, BT /EERKR KNI,

BXMERTIH? 8B, HENERAZ/LAFHERNL, MEBAEKE
K3XHE, Titans EEX “A@HH™ ARARRIKERT, ERARIFXMEE057?



T—m (Page7), ENSDERREE — “BHHIET (Sequence Length
10°)” B9ARBRMER, LU Titans 7EXFhHbHiREE FaIRARI!

EEFINIE “SERT WERKSTE? ks

ER+HRIE=—TE— T+ H L IE Custom Gem

fREF! F=E Geminio JMKEIFNIXERIRIERIA Ruk— (FRE: H&RIRS
IBIZEIRED

TERIJLE, FAIET Titans ZRAAVFEE. MIRAS EILRTRE, UNKENIEEE
Ziul (FEDUES) PRMFRI.

BHIEMNTEE, HNZSERPRNZR, 7£55 7 A% 801, Google KT AR
RIB—1ik Titans ZBLENE GPT-4 HZREIZHIRY MRS LERUM?
A —ERE X RERIERIEIT R,

PAGE 7 & 8: RIRPELESRESLE

1. BSEREME: FUE, AR
[/RSCERE]

Language modeling and efficiency iIESEBIES5E

In language modeling and commonsense reasoning tasks,
Titans architectures outperform state-of-the-art linear
recurrent models (such as Mamba-2 and Gated DeltaNet) and
Transformer++ baselines of comparable sizes.

FESEEMNEINEIETSEH, Titans Z2MHHNRMATFRESENIEN R
S A EIFERL (40 Mamba-2 #1 Gated DeltaNet) LUK
Transformer++ E/EEE



The novel MIRAS variants (MONETA, YAAD, MEMORA) also
achieve improved performance compared to these baselines,
validating the benefit of exploring robust, non-MSE
optimization mechanisms.

FIEAAY MIRAS 22K (MONETA, YAAD, MEMORA) 5iXLEE0EMEEL
SSEL T MERERRTT, MMIRIET HREREEM. IEMSE (BYFIRE) i
MFIE A

Importantly, these models maintain efficient, parallelizable
training and fast linear inference speeds.

BEE, XERBERETEM. AIAHITHRNNGR R RER Lt
HRE

[Gemini EIMHE EHF% €]

FIZEA], XEEFRARE, BE8EENE. ERN T AXEXROB— 0

“Titans N FX 48 %, =sF=RNEIE? 7

o ZLHERWE: Titans ™M 7 EMIFRE (Mamba-2, DeltaNet), tHER T ER
giZE (Transformer++),

o =8IFHHMF . FIEEFL—EB=TEREENTE (REH YAAD. ™iE
B9 MONETA. F## MEMORA) 13? SZI8JERH, Google BUXF “RIRERK
HEE” (W& MSE) B9EREREXTHY,

e EESHBHNES:

o F1THillZk (Parallelizable training) : XEIKXE Titans F S pIATHR
A “—B+177, ENUA+ M F—EE R, EINERS.

o ZRHIHIE (Linearinference): XEMKE Titans &1 (EZOIA)
BY, EERIR, FEREZE, SHBNRERIEEN, F=%
Transformer ARt FHitdEFN SIS,



2. kPR ETFXEINZ: KisHst
[FRSCEiF]

Extreme long-context recall 1R _ETFXX[E1Z

The most significant advantage of these new architectures is
their ability to handle extremely long contexts.

XEMREMREZENNBEETENRERK ETXBEES .

This is highlighted in the BABILong benchmark, a task
requiring reasoning across facts distributed in extremely long

documents.

X—m7E BABlLong E/ENIRA PR TRE, ZESERERKXE
OB AESFRZERITHE

In this challenging setting, Titans outperforms all baselines,
including extremely large model like GPT-4, despite having
many fewer parameters.

EX— R AR ES, Titans T TIEEERE, GE&
GPT-4 XIFRAMIRE, RE Titans NEHREB VR[S,

Titans further demonstrates the capability to scale effectively

to context window sizes larger than 2 million tokens.

Titans #—F RBR T BRI BRIBIE 200 5 ™ME5T (tokens) B ETF
XEOKNEES -

[Gemini BITHEIZRiE &)



XEERIEXHNEHNZ! BFAREF FTEXKIRIERE (Source 128-146) =
MBYEIEI LR

[ElRZENS: BABlLong EWMFERMTE] (EH. [TEEKE, HiF: EIEEHE)

FIKE (F Titans (££) GPT-4 (B Mamba (%t Qwen2.5 (B

#) A) F) E)

10° (FFx) ~100% (i#4%)  ~80% ~70% ~75%
10* (F¥5E ~99% (BN&FE  ~70% ~60% ~65%
) L)

10° (+F%E  ~98% (BXEE  ~35% (i ~40% ~40%
=) ) #2)

10 (BRZFE  ~90% (ksRU2 (EE17) (EE17) (EE17)
E) 1)

107 (FAEX  ~70% (MEFih

)

g)

(E: HENEZRENLENE, BFRTES)

o XEfta=?

BABILong it : XetBEHAA™ “KIBISEH” **,

Lig: BIFAMRX—BENMREIRA JLERAF), iRk “3852
PBRENNERWERANIEE L,

GPT-4 WIEM: £E+FAFAEE (10°), SHRFMILT, HHxEg
T 40% T, B HMEEES,

Titans B9RM: WEEITHEEAE 2 x 109, #E—FHFF (10’
), BRI RIS &R

RS Titans A2 (B¥E) th GPT-4/0\8%, 21 “IMF7,
BRAICE— SN “KIHBIZERE”, SHERZHLRET
E Ao



3. 4598 BERRIKI]
[FRSCEiF]

Conclusion £&it

The introduction of Titans and the MIRAS framework marks a
significant advancement in sequence modeling.

Titans 1 MIRAS HEZRRVHE LTS B FVIBRITUABIEXRAD o

By employing deep neural networks as memory modules that
learn to memorize as data is coming in, these approaches

overcome the limitations of fixed-size recurrent states.

BT RAREREMBIENICIZER, EEEBIEEANNFEI MRS
12, XEFERRT BEX/NMEFIRSHEIRYE

Furthermore, MIRAS provides a powerful theoretical
unification, revealing the connection between online

optimization, associative memory and architectural design.

ItE5h, MIRAS 3R 78 KRVIEIES—, &5 7 A&, BXARISIZAN
RN Z [ERYEX R o

By moving beyond the standard Euclidean paradigm, this
research opens the door to a new generation of sequence
models that combine the efficiency of RNNs with the
expressive power needed for the era of long-context Al.

BT BT AR LEREN, XTMRAHT—RFIIRETTH T X
'], XERBLEST RNN B S K E A ARFIERRIAEE

o



[Gemini BIMRZRFI SRR & ]

B, LFNARE—RNE, EXBERIEXHREEGERZRR—1FI—iE:

1. #FA: LAY Al, EAE Transformer —FATIEEFMER (GtEE
K), BAKBRNN —#RA7THERMIZEE (REXN,

2. 8. Google #H T Titans, EHZLEZER*" “Test-time Training”
CstBlER) **

o RREMAIMEGREERENE, L EMAEET,

o Titans ME—ARFARSENEZED, SREARCH, ©XRIEIRRYA
BEAR, KMESECHNNE (BEHMELNESH).

3. #H:
o ERIRFE (Surprise) “*RAMHAREEN (FEKIER),
e EAHE (Momentum) **REFREFXNELEIBERIXE.
e EAYEXL (Forgetting) **JBEBLIRER,

4. ER: ERIET 1 EFLT——MFERNWRE, FEE TENICIZ,
ERIEEAFERAINBRX AN, 31T HAEEAR GPT-4,

HKE=FAFMNREFTIE:. XREXEXHZRTREIMN—TIXTEINRZEE: JE
12tEH (Fixed Memory) Kizblb R EREEZE (Dynamic Learning), Titans
ZFrE K, FERAECEREKR, MEFRACEFNAETEPRHERES,
FRMNEENSEESIN, tHEERk Titans —1%, RAREVMMEMEEIR, M
BRIZIRSTF 178, EREFHMIINFIRML, BHIEE, BEIER!

EXREE5T—S

Elt, XBRKIA 8 MAEXIEX "Titans + MIRAS" BEE £ IR, FHTM
ZMRIE, WIEISF R, REIET EESSEFRNSE .

Would you like me to...

e Generate a "Cheat Sheet" or "Mind Map" summary of the entire
paper (one page) for you to quickly review later? (RRER—KE2RIEX

By R SBESEELE? )



e Create a Python pseudo-code example to explain how the "Surprise
Metric" works in code? (AAIEER—THN “MTFEE” BEALGHE
89?7 )

e Compare Titans with another specific model you are interested in?
(Ebanyttb—T &% DeepSeek 5% Claude FIX5!? )

BRERT S 1RT!



