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Abstract

Biological brains demonstrate complex neural activity, where neural dynamics are critical
to how brains process information. Most artificial neural networks ignore the complexity
of individual neurons. We challenge that paradigm by incorporating neuron-level
processing and synchronization, as reimposed neural timing as a foundational element.
We present the Continuous Thought Machine (CTM), a model designed to leverage neural
dynamics as its core representation. The CTM has two innovations: (1) neuron-level
temporal processing, where each neuron uses unique weight parameters to process
incoming histories; and (2) neural synchronization as a latent representation. The CTM
aims to strike a balance between neural abstraction and biological realism. It operates at
a level of abstraction that effectively captures essential temporal dynamics while
remaining computationally tractable. We demonstrate the CTM's performance and
versatility across a range of tasks, including solving 2D mazes, ImageNet-1K classification,
parity computation, and more. Beyond displaying rich internal representations and
offering a natural avenue for interpretation owing to its internal process, the CTM is able
to perform tasks that require complex sequential reasoning. The CTM can also leverage
adaptive compute, where it can stop earlier for simpler tasks, or keep computing when
faced with more challenging instances. The goal of this work is to share the CTM and its
associated innovations, rather than pushing for new state-of-the-art results. To that end,
we believe the CTM represents a significant step toward developing more biologically
plausible and powerful artificial intelligence systems. We provide an

accompanying interactive online demonstration and an extended technical report.

Figure 1: Solving 100 steps from 39 X 39 mazes: (a, b) Observing using attention (no
positional encoding (weights shared), imagining route (arrows) from red to green pixels
(b)) attending beyond 100 steps; and (c) generalizing to 99 X 99 via sequential re-
applications of the same model.

39th Conference on Neural Information Processing Systems (NeurlPS 2025).

(a) Each random-colored subplot is (b) The CTM looks around to build up its prediction,
effectively tracing an


https://ctm.sakana.ai/

a single neuron's activity. intuitive path by synchronizing its neurons to attend
dynamically.
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Figure 2: ImageNet-1K demonstration. (a) Complex neural dynamics whose
synchronization are the representation with which the CTM observes and predict. (b)
CTM's attending process, showing all 1k attention heads (left) and average thereof
(middle). Arrows trace the average; highlighting over internal ticks, exemplifying a
complex path that emerges without any training signal. We discuss more interesting
emergent properties of the CTM in Appendix I. Video demonstrations are here.

1 Introduction

Biological brains exhibit complex time-dependent neural dynamics, but artificial neural
networks (NNs) intentionally abstract away the precise timing and interplay of neuron
interactions to facilitate large-scale deep learning [11, 2, 3]. While enabling significant
advancements over the years, these simplifications deviate from fundamental biological
neural computation principles. Emulating the temporal aspects of neural dynamics
present in brains remains challenging. Consequently, modern NNs prioritize simplicity
and computational efficiency over strict emulation. This abstraction, though task
performant, contributes to a gap in our flexible human cognition and current Al
capabilities, suggesting missing fundamental components, potentially related to
temporal processing [4, 5, 6].
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Despite its outstanding performance, modern Al lacks the flexibility, efficiency, fluidity,
generalization capabilities, and common sense of human intelligence, which operates in
an world where learning and adaptation are tied to the arrow of time [5, 7, 8, 6]. We argue
that incorporating time as part of neural computation is crucial for advancing Al [9, 10].
We introduce the Continuous Thought Machine (CTM), a model explicitly incorporating
neural dynamics over time. Our contributions are:

1. The CTM architecture using an internal dimension for modeling the temporal
evolution of neural activity, neuron-level models (NLMs) as a more biologically
plausible micro-level abstraction of neurons that unfold neural dynamics, and the
use of neural synchronization directly as the representation that is implemented via
temporal correlations between neuron-level activity (Section 3.4) and observation
and prediction, making neural dynamics the core operating principle.

2. An exposition of the capabilities unlocked by the CTM, including strong performance
on sequential reasoning tasks (Figure 1), native adaptive compute, time, natural and



interpretable behavior such as ‘looking around’ images before predicting (Figure
2), and learning algorithmic solutions, opening up opportunities to the Al community
for new research.
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The CTM learns to use neural synchronization as its latent representation, distinguishing it
from existing work that explores synchrony as emergent property for post-hoc use [11,
12]. This representation is distinct from the common static, Snapshot, representations
used in most modern NNs as it directly encodes the temporal interplay of neural
dynamics.

Recurrence & Reasoning. Recurrence is a strong contender for extending model
complexity beyond current scaling limitations [13, 14, 15]. We posit that recurrence, while
essential, is merely one piece of the puzzle. The temporal dynamics unlocked by
recurrence are equally crucial. We demonstrate in this paper that neural dynamics can be
leveraged to build a new kind of neural network with surprising capabilities. We show
how the CTM navigates complex 2D mazes by forming internal maps (which positional
encodingsignore),itcan ‘look around’ (without any signal to do so) when classifying
images and exhibits native adaptive compute time as a side-effect.

(Section 5), and utilizes its dynamic representations for tasks requiring memory and
sequential reasoning (Section 6). These capabilities emerge from the same core
architecture applied to different tasks, showcasing its versatility and adaptability. We
believe the CTM represents a step towards bridging the gap between powerful modern Al
and biological plausibility.
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The remainder of this paper details work (Section 2), describes the CTM (Section 3),
evaluates core capabilities on 2D mazes, ImageNet-1K classification, and parity
computation (Sections 4 to 6), summarizes further experiments and applications (Section
7), and discusses findings (Section 8).

2 Related Work

The CTM uses neural timing and synchronization as core computational principles. This
positions it relative to, yet distinct from, several lines of research.

Adaptive Computation. Many approaches achieve adaptive computation via implicit
mechanisms. Early work on networks [16] use intermediate classifiers for early
termination. PointerNet [17] and Adaptive Computation Time (ACT) [18] implement
learning halting modules governing recurrent steps. More recent methods like AdaTape
[19] dynamically extend input sequences, while Sparse Universal Transformers (SUTs) [20]
combine recurrent weight sharing with dynamic halting and Mixture-of-Experts. In
contrast, the CTM’ s adaptive processing emerges from per-tick per-input based on



certainty and loss dynamics; Section 3.5) emerges naturally from its core architecture,
driven by the unfolding of its internal neural dynamics without dedicated halting
components.
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Iterate and Recurrence Reasoning. The CTM’ s internal ticks facilitate iterative
refinement, akin to models generating internal computational steps. For instance, Quick-
STAF [21] uses hidden rationale generation in language models, and Recurrent
Independent Mechanisms (RIMs) [22] employ modular, asynchronous sub-networks for
multi-step reasoning. While Recurrent Models of Visual Attention (RAM) [23] leveraged
recurrence for sequential processing of visual glimpses, the CTM’ s novelty lies in
generating internal neural dynamics from neuron-level histories across a decoupled time
dimension and then utilizing the emergent temporal patterns of neural
synchronization as its primary representation. This contrasts with RAM’ s focus on
perceptual decision-making from external glimpses or models relying solely on a final
recurrent state.
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Biologically Inspired Neural Dynamics. There is growing interest in more biologically
plausible neural computation [24]. Examples include Liquid Time-Constant Networks
(LTC-NNs) [25] with neurons governed by time-varying differential equations and various
Spiking Neural Networks (SNN) paradigms that inherently use discrete, timed events, with
prior work also exploring synchronization mechanisms [26, 27]. Our model draws
inspiration from temporal coding and neural synchrony, but uses: (1) neuron-level models
(NLMs) to process histories of continuously-valued pre-activations to produce complex
dynamics, and (2) neural synchronization as the primary latent representation for
observation and output. While inspired by principles like spike-timing and synchrony,
CTM abstracts discrete spiking on local temporal integration and population-level
synchronization into a tractable, differentiable framework suitable for gradient-based
deep learning, rather than replicating detailed Biophysics. This situates the CTM
alongside, yet distinct from, extensive work on models such as Liquid State Machines [28],
and diverse SNNs that exploit precise spike timing for computation or employ specialized
learning rules [29, 30, 31, 32, 33]. These latter models often emphasize event-driven
dynamics, explore non-differentiable computation, or focus on online learning. The CTM
offers a complementary direction, retaining inspiration from biological timing while
ensuring compatibility with established deep learning paradigms.
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Synchronization. Reichert & Serre [11] proposed a model where synchronization
emerges from in-teractions among complex-valued neurons, serving as a gating
mechanism that modulates information flow and enables post-hoc grouping of neurons
for tasks like object segmentation. Unlike CTM, however, their model does not use
synchrony as a learned latent representation during computation. Other approachesin
complex-valued neural networks [12] employ synchronization from a control-theoretic
perspective, aiming to stabilize or coordinate networks via externally enforced synchrony.
In contrast, CTM integrates synchronization intrinsically, optimizing neural phase
relationships during training to encode task-relevant representations. This integration in
CTM is a computationally grounded model of synchrony, fundamentally distinct from
prior works that treat synchrony as a control objective.

3 Method

Figure 3: CTM architecture overview. Key components include: @ Synapse model
generating pre-activations from prior post-activations Z and attention output 0.
History of pre-activations A . @ Neuron-level models (NLMs) processing A to modulate
post-activations Z History of post-activations Z'.® Neural synchronization matrix S
computed from Z'. @ Selection pairs from S form @ latent representations used for @
outputs y' and attention queries q'. Attention output 0 is concatenated with Z' for
the next internal tick. Owing to the inherent difficulty in visualizing its dynamics, time
based architecture, we include the supplementary video 'arch_mp4' (hosted here) that
visualizes functional data flow.

The Continuous Thought Machine (CTM) is a neural network architecture that explicitly
incorporates neural dynamics as a core component. Figure 3 (1) = @) and pseudocode
in Listing 1 illustrate the CTM's flow. The CTM differs from other recurrent architectures
[34, 35, 36, 18, 37] in two ways: (1) it applies neuron-level models (NLMs), each with
private weights, to histories of pre-activations to produce complex neuron-level activity
(Section 3) and (2) it uses neural synchronization directly as the latent representation for
modulating data and producing outputs (Section 3.4).

3.1 Continuous Thought: The Internal Sequence
Dimension


https://ctm.sakana.ai/video

The CTM uses an internal dimension £ € {1, -+, T'}, decoupled from data dimensions.
This timeline of internal ticks [34, 35, 36, 37] enables iterative refinement of
representations, even for static data. Unlike conventional recurrent models that process
data in fixed sequences, the CTM adopts a self-generated timeline of ‘thought steps’
that unfolds neural dynamics for downstream use.

[#%i5)

BEF], X—KERABTEHNERE ELTBLENE" (CTM) XRIEXH “Kupil’. EBELE
BT RZERN “WEET” WEZE, ARBRTCIMBNAEEEMAAX—R8. 1EE(&
FE—aRRNB—TERIME,

1. ft4a% “E%” (Synchronization) ? EAHAEE?
BR—TRMEH. IRENFFEREN, BERS, IRAXERBE—ITNRESR, A
T &R, ERERFER, “AF” MESEARNSETER—E ‘KB 3EHK.

o FIARIMMIE (Reichert & Serred): LIEINMRIAA, BFMGER—N “FX" &
“IIENS %, thin, HENE—KER, f5RA ‘W NHLEHETs—ikKERS
e, HFAM “Xe—H" ., BEXRE—MEFLRENINER, HER—FAERRFNFE
(IFHIEICMA), MBEERBITERARTEZ—HURIE.

o CTMHYZHE: CTMiIE: “F, AFRNNEHX, RATEGMEIES.” ECTMH, HEN
FLEINGEIRBPREDEFZIMRUHETZEREMRXFR (Phase Relationships). X
MRETXAREZRRBETESFAENER. XRNEAT ‘B, MERT “&. XEFH

“MTEER” (Integrates synchronization intrinsically) , 2CTM5aIA TEMIRZAX
o

2. E#HCTMHE “EiD51%E” (Method & Figure 3)
BTRIEERT TCTMAIZEME (Figure 3), AMARLAEFEMELITE, RITREEHNEZE

R

o EZFMMETT (NLMs): CTMAREGLFIE ML BRI B BRI TER®E T, T5l
AT “ETRIER” (NLMs) **, SEMHETHEECH “RANE" M “HEiBiZ”
(History of pre-activations A)., #REILUBEAERE: MUEMMETEAREENTE,
MCTMHNBETEE— M #HFEEILAR. EHIIBEZNAARER,

o FI$EIEX (Latent Representation): EFHMEG@HItET “WEESHERE S”, XIE
e EECHNA—BRBIMBHE T ZEBRE T E—N, KM HFIEYNIERE
(BERT) -

3. REERVEES . NEPRBLLEE (The Internal Sequence Dimension)
XS =ZYESEHFEPRODIORS, BEAIZEEEDRIERKA
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o BEAIRNN (BRIFMEMSE): MIBHUIENTREWoIN, BAE—mE@E, BE—R;
BENE M, WIEB—R, MEBIREZHLE, BINE—RME—&, ZhYE%4E,

o CTMHY “B4R}E": CTMEINT —1MSEIBT XSRS ES (Internal ticks) . BRAR
BHe—iKeEMER (Staticdata), EWRAIMERES “BZE” 17/1% (Self-generated
timeline) .

o 3Lb: MBEEANEE—IBE, EEFHLEN FUEFAT), BIRNBHEES: X2
Fa? B, BT, NAAXEBHBXAR? BMioaRHAa?”

o XMIEFZE “Iterative refinement” (GERMLIL)s CTMIEFTH2E “HERE” B
BES], itEERHERzE), FEARASBBRENNE ‘B RKEE—E

BE—T: XBRENZOETHICTMB ST —ERZNTREIMAL, MIEL “HeE
TTZERHIE” SERERIES, AECHBMIIA "BENE", FERARIINERHIEIHEAN
REHEE, XULEER—TPELHAR. RiF! REXENIREXG X T RIGHE MR
BMBPFANE, XERABTER T —MR(GEY ARSI ENHIRIRISHEMNSIgT, S REIE
12 T2 BRYIRII T E LI NREMERARRY “FZ HlHl.
BAPFEXE D AR EEZR D RKIFAZIN. B0 RXEXT “KIK” AB2NEIZ0LL
BEEN GESHETERE); SoXIeENMmEd “RL” K= Emb RSNt
FEHY

I FATF G —BR 0 BYAEIR.

[RX]

3.2 Recurrent Weights: Synapses

A @ synapse model, fsy,,, interconnects neurons in a shared D-dimensional latent space,

Z € RP. wefound a U-N ET-esque [38] MLP (details in Appendix C.1) performs best,
suggesting benefit from deeper and more flexible synaptic computation. It
produces preactivations, a:

at=fyny(concat(z?, o)) € RP

where O is attention output (Section 3.4). The M most recent pre-activations form a
history A':

A't= [a'(t—M+1), e a’t] c RDXM

Initial pre-activation history and Z %L are learnable parameters. We found that setting
M = 10 — 100 was effective during our initial exploration.
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3.3 Privately-Parameterized Neuron-Level
Models (NLMs)

Each neuron d € {1, -+, D} has a @ privately parameterized NLM, g4 (depth 1 MLP of

width Dpjidden), processing its M-dimensional pre-activation history A to produce
post-activations:

24 = gd(A))

The full set of post-activations Z tis @ concatenated with attention output, O', and fed
into the synapse model fsyn for the next internal tick, £+ 1. See Listing 2 for pseudo-code.

(#2%)
R—KBIENAT —MERERNRERANEE. A TILINEFHIRE, RITTUER
PRIBRA— " EENLETITIME

1. RfittER (Synapse Model) : FHiT4ARY “3Zimdicy”

B, XHRET “REIER fon. HEYFED, RMEWITZEERESHES, EX
B, 1EEIE foyn BtR— M ERMEER (R T2 U-Net 51989 MLP, —FhZEREIN) o
RA LB ERR T/ NER “AHIHEX” **,

o MARHA? TEKALEE: —SNEARBYUSNELRS (21, MR TELEsE
BORT) ; —RIMRERMEFAIR (0!, XBREEAMHIIMTE ).

o fifta? TIERBFAEFMINSELR “BHE” (concat) 7£—itt, ABEFITRERMIAE

o MHBHA? FET “TNEEM” (pre-activations, ). XtiEEARITEBF=EM—
MO EHER

2. BigR (History A): FYBYT, FEEIE

AR LR, RAFRSRIRE “MEX—F NEEMEE, EREEEE M PARZINE
Ro

A A= [aEM) oo U SRR, REMERT—NREN M B “GiidizEan’,

o EIb: BMEMREMIIIRIERN, FIRITEIAMXNFE, MESKRI—AIENA—K
MAZE (tbald 2 10 E 100 MHZINER) . XMRF 7 RELIER 8] %551 _E T XXAYEE
7o

3. AR SEUMMETIRE!. (NLMs): SPMASEMISHNEESK

X R RIMFH S 2 —!

FEZBEMEML (90 CNN Z Transformer) 1, KERHEITHEZR—ENESE (LLW0E
Ze—1$M) . 1BTE Section 3.3 H, fEERHET “FABSEM” (Privately-
Parameterized)
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o XEHKETA? 85— HET dPECACTETRIIMER gy

o ¥bb: EIBNGFHTNA, BBHHEMEGEE—HASBESHNFEREA, AKEHH
F—AFMLEIE MXENNLM BEGRNMENES I ZERE A SIREFNE L& R
Mg, FEA ET]) AIREERKQERS, 4B (MET2) ERAEES,

o T{ERR: S LT JZERTACHNBORERER A, BACRENRT gy #1T
BE, BEFSHE— “EHEME (post-activation, Z.

4. #Ai% (Loop)

BE—BHER T BTRSAERN: ARETREHRMNER (7 ) BkERK, BRmst
MEL 0 G, PEA “TMER fop, NTFBT—MEZ t+ 1 0HE, SHERT—
AREEIR, BREFNGSERE, RERIARDRETREIIRN,

[=X]

3.4 Neural Synchronization: Modulating Data
and Outputs

Synchronization is inspired by biological brains [39]. The CTM modulates data via
the synchroniza- tion of neural activity!. We first collect post activations into Z't
(non-fixed length history):

Z't=[7"1, - 7'] € RPX!

We define neural synchronization as defined as the ® inner product of the histories of
each neuron:

S't: Z”t° Z”t = RDXD

3.4.1 Neuron Pairing: A Sub-sampling Approach

Since S’ scales with O(D?), it can grow very large. We sample (i, j) neurons at the start of
training by randomly selecting D+ and D,ction pairs for two synchronization
representations, SOUt & RPout and Saction & RDaction, These are projected by W, and
Wi, for outputs y' and attention queries q':

y,t: Wout‘ SOUt
q’t = W, - Saction

We use standard cross attention [40] for 0:
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o! = Attention(qg, K, FeatureExtractor(data))

where a FeatureExtractor (e.g., ResNet [41]) provides keys/values, 0 € RDinput js then
concatenated with Z 1. This process, including learnable temporal scaling, is shown in
Listing 3.

(%)
X— S BAENNBEENHSIRERER, BETRETEY B REMERH
IR, KR—MERE GRFEDS) Mgt

1. ##4ZF¥ (Neural Synchronization): F#%itS

EESINT — 2O BF. EHERFEPRE—AE S “Fire together, wire together”
(—EHANBETRETE ), XB, FEREIHFESHBIEMETZEnNXM “H
15”,

o ARXMRFE: 7 EFEMATMATHRINENRERTIER, SI=2t. Z 12— KRR
=1

e XRHAER? THEARNT, IF () GEF I ESBEMESREXE, +E
7 -7 TR EEiHES— TR i L aEshia R,

o Elb: BR—EZRFH, S MEE—NELNFHITR, BRT UMEEF M ARE
F EEGEETR, §%/URSARTIEN, XM ASE G8TEANEEE, K%
T RAUBIERIRS.

2. #EZEMN S5EIE (Neuron Pairing) : iR HEIRIEMNIR)E
XEBET —ME LBk, WRIMFEE D MwEx, BEERRZENRS XA, (MEEiT
B D> M E (B0 D X DHERE) o

e {AIEH: W1 DRA (EbiN 1000 MHET), D* #2100 7, HEEAKT, X
O(D?) 8%,

o MRRFER: XEBEM “Sub-sampling Approach” RE 7T HNFHERE, MEERERAER
TEME2E 14 1ZA, REERBYVIHEUL T MERMEABAIELE R

o EEBETEIGTFTIRTT, BENPKET —LLMI T F (pairs), RITEXEAFERNFHRTIH
R, BTN EE SOU (BFHmE) 1 SV (BFITRh/EME) . KARAMTS
BAT8,

3. fmth5EE ) (Outputs & Attention) : 51
&G, RAWNAEFBXLERLEEE?

o FEUEHE(Y): WILIERE W, BEISKRES SOUIRE MR, XHBHENSLEE (1
53 RERRFUE) o

o FEETW (Q): BITLIERE W, BRSKE STV it “ZiHE” (Query). Xt
RRSRIBYTNEERS, RE “BNEMZEZRIHAEE,
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o XX:FET (Cross Attention): XZE—MRER Transformer 4, RAEE “EiEM
£” g, EYMBYIE (M FeatureExtractor 32EY, LLinF ResNet MBS MBI L 4HE)
FHIEENER.

o R FBHNFINGER 0 (RS ‘B IMNESEE) SRZET—RER, 5
RECRSHHE, RET—HEE,

24k

EXEN ARG — MEPBIARN:

1. AEREIF: 27Tl (NLMs) HEZ BN, BERM (Synapse) FAE3m, HR
BREHAIENZ,

2. BMAEY: AFuBIMBERETZ BEKINBEIER (Synchronization) RIEA#ZHE1H
W15,

3.XE: RIFEXMHIRRE, ERERWHAAER, UKRT—HZEXTINDHETAIH—B
DER. RYF! REMEUTIMBE M AREIRZ G XTI BEERE (CTM) 8%
AR, XEBD AR MBEMLNELIE “BFE” 1 92127, URIMAHGRALE—FIRE
ERARERIZE B tEE,

XN TFE=FERNIIEFNRLERE, AACES TIMIBFREENRHRERER. FitF
B, UNREMFHRNHETRE,

BAPE AT 72 7 = BB KIF BRI,

[RX]

Scaling Temporal Dependency.

To modulate the influence of past activity on S, weintroduce learnable exponential
decay factors rj; 2 0 for each neuron pair /j. The rescaling vector over £ is:

R; = [exp(-rj(2 - 1)), -, exp(-rj(2 - 8))] € R
The rescaled synchronization is (see Appendix H for efficient recursive computation):
t I 1 |
Z2:1(22,/‘ Ze; RP.,ij)
t |
\/ZE:I(RP,,//')z

Higher rjj bias towards recent ticks (rj; = 0 means no decay). Learnable decay rates rij
allow the CTM to modulate synchronization across multiple time scales?. Details on

i =
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neuron-pair sub-sampling strategies, including recovering snapshot dependencies, are in
Appendix C.2.

[##33]
XEIENZOEEIE™ "B 5 “i812” BEFENS

HE—T, MER—EERMNYERE. BEER (LLBMBLAHNVERE) BIR—FIEME
BEE—BHERAM; MELEER (ttdRZBEEHHNIEHNZE) Al —=) Il MAEET,
ARFELIBE R, WARNEIZH “REH” RFRR.

EXMER (CTM) H, EESIANT— MR BEfkEitiEaI4Em (Scaling Temporal
Dependency),

1 {E¥=HEF (Exponential Decay Factors) /;;:
ARIEB— T IEHEE y = & XBEFEANE € "R,

o I B—NEIEIMBE (learnable parameter), BREHEMERTEIFLZFE
CEREXMENZZESZ D,

o AR Ry BRT—MRERIE £ THEE,

o RS WR ;i BKA, EHEH e NESRREL 0, XEKEEESRE &
= WERER, AXRERIELER (bias towards recent ticks).

o RZ, MR =0, B4 =1, BERELSEEARR, SENTIZIIENITIZ
—HEE, XRNKRT “KHIEIZ",

d

/-

2. EMBEMBIRESL 1 (Rescaled Synchronization) 5}}:
BMERRBERN S; A, HEFFRER—MILTH.

o DFENBEWETT/ESN L BIFER, FUT BHAINIAHIESEINE R,

o NHEEHEATYI— (Normalization), HREERSTHEZ K,

o XFGIRIENNFID—HF, BERENES, FREUNER,. XER “BUTEH
IRYBYE) =, BENEES GRIEr=0)7

3. ZB4EIRE (Multiple Time Scales) :
EEIRE, BEFIREN rj, HEEAIURRLERERFRNT R, XHERE—ILIFE
R =N GENERE), —AEAREANTEANES R (KEERE),

BEERY, X—RBAMEMEZE LT —1 "AATRICIZTIRE, iILERBE T REME(S
BIZUGTE, MEERIZBICED,

[RX]
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Loss Function: Optimizing Across Internal Ticks

The CTM produces outputs y' € RC (e.g., class probabilities) at each internal tick t. We
compute a loss Lt = CrossEntropy(y ¢, Virue) and certainty Ct (1-normalized entropy)
per tick. For each forward pass we select to ticks:

1. The point of minimum loss: £, = argmin,(L?), to select the ‘best’ prediction; and

lwe found that 'snapshot' representations were too constraining: projecting from Z
strongly ties it to the downstream task and thereby limits the types of dynamics it can
produce, whereas synchronization decouples it. For full details we have found that the
CTM learns to average this for ImageNet (Section 5) but more so for 2D mazes (Section 4),
suggesting task-dependent temporal sensitivities

The final loss for optimizing Bsyn and Bg-1.p is:

(L1 + Ly)

L=
2

Since 1 and & are dynamically defined per data point, the CTM can attribute variable
compute (internal ticks) to different data points as needed without explicit restrictions on
which tick should be used in the loss function. This effectively implements native
adaptive computation [18] as opposed to a post-hoc addition. We give pseudocode in
Listing 2.

(#2%)
KRR, CRETELRMAT GAR—REE HETERMKN.

1. AEPEEZI (Internal Ticks) Sig4tad:
RANHENLBER WANEF > BE > HHER", BXPMCTMERR—%, 88—
NEBEYETIEIS (Ticks)o FURIREZ D LA, HBIFRATEELEBEE, F10FHE MEMAY
15, BIMHETER, BREES—IHNZ (HHmE— T y,o

2. ¥iskE¥k (Loss Function):
XEWNBEINZC, BHYEF TEORE

o LIEATRNHM (CrossEntropy), XEE =42 this R RN RIBAIHIREREY
B, (ROILUSREBRAEE “TUNER M “NEESR ZiaEENIEiR.
o ERIAEFARZIPIIHIRERNNIBINZ ¢, UHECRISITFHI—BIE,

3. BI3ERAAE (XTF Snapshot vs. Synchronization) :
T EREMBRERELE (1) HSSEE TIRITHES., FELN, MR SH P HETH
WREHEA “RER” (snapshot) , KFRHIRBINREMN. MER “BSHE”
(synchronization) BELEIRE M EARES FREFEL R,
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o Etb: WMRMFEBREFKICHEL (Snapshot), I MNEBURMART . MNRIREET
FIRRZ [ERYIZEEX R (Synchronization) , fRMEEE—R=. FERIEERE
(2D mazes) XEERESH, XMREELNEE,

4. FERIEMNITE (Native Adaptive Computation):
XA EIIIZ,

o FEXIRE t; M 6 BREHMNENIEREIEE X,

o XEME: WTHENEF, BROBEESR2MIKkMEH TRESSR, 1TEMSE
T WTFEXFMKE, EAEERTIZFE100Mick,

o ZLENX: RERFEANME “DRBENH, EXINT™ “BREQERESN
o XptGER, BRMETERTEI0N, EHABIRE202#H, XMYGEIREE
AT EXBY (post-hoc), MEERKXEBTH (native)o

BEE X T REAEI LR S8 —ZNRNAKES, FEHEFSTHTARBIMER
BRANFRBHKRY “BERE",

[RX]

Experimental Evaluation

The following sections present a focused evaluation of the CTM on tasks that highlight its
core principles: neuron-level temporal processing and neural synchronization as a direct
latent representation. We aim to demonstrate how neural dynamics enable the CTM to
implement complex reasoning or adaptive processing, while yielding interpretable
strategies. We prioritize in-depth in three key experiments: 2D maze navigation,
ImageNet-1K classification, and parity computation. We also summarize and highlight
additional experiments demonstrating the CTM’ s broader capabilities.

4 2D Mazes: Complex Sequential Reasoning and
Internal World Models

[f#33]
X—BREREEINAR, BmE™ “SSHRK7 T, FRE T EBLESK LAHFR
B (REEF. BENHE) ZfE, 45EdStiRKIERREERNE K.

1. L8 HBY:
EBRREIGIECTMBIFE MZOER N :

o #HETTAFMNEIEINIE: HNEE, HETEHENELEEER X,
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o MERPIENBERT: BNEE, METZEMNMELERERRT EMAIR,

o FEEMRE, MNHERI™ “TIfEEMNZEKEE" (Interpretable strategies) **. I7E
HNRZAGITEREF, HRIFHETEEARN, (FEHECTMEELRINBIEN “B
EIE

2. ZRXREELE:
EERONE T = MESS, DN =MARNEES, MEE=RN=]ER—1%F:

e 2D Maze Navigation (Z4:EESFAn) : WIBEHIBEMME,. EXEFTERREED
HIEE, FMXIAKRHEE, XFBBRANFTIEEENMNRERIL “WEHEREE” (Internal
World Models) . XFLENTAB4ATHAREIFIRIEAT “ERFETIHIE,

o ImageNet-1K Classification (Ef§4533): WM EMEHN. XBAIRN ‘", &
REGER R EFRIRAI HE R B2 IEE S,

o Parity Computation (FE%itR): MYEMIZHEIEZR, XE—EHAITER
A, MR B MR RIPIERIEE S,

3. At 4sail “REtt FIER” ?
EFEATRREA, IBET “Internal World Models”, XM TFIEFMAAIIEEETE, XE
REREERNVNEEM “WAA>HB” NEERS, MEEEN “WE BEMgET—1
RERME, ERUGALE—EF, ERFETEEAE, MARRFILE,

BEE X—ENTE TIREREMR. SENMY = MEEEZ L, (28 TREESK
BREGRAL R OIEMENSHIT K EWEIERIEE . REF! REMENIFIRXGXTF
AT BRI E, XR—RATREFIRENAGALR—FEZ. MYMERTIE
AR F AR o

NTILIREF IR, BREXBREFRNFANEDN TR NIEESD. RSB LRNER
588, AEBESAXBNGRE SR,

WA RS —E

[RX]
In this section we analyze the CTM’ s capacity for sequential reasoning, planning, and
spatial understanding using a challenging phrasing of the 2D maze navigation task.
Solving mazes can be easy with the right inductive bias. For example, matching the
output dimensions to the input space; a model can perform blurry classification at each
location. Such a setup is amenable to machines by design, as they can learn iterative
algorithmic solutions [37, 42], but this is not how humans solve mazes.

Setup. The setup of our maze task deviates from the norm, specifically to necessitate the
formation of an internal world model [43] by (1) requiring a direct sequence-of-actions
output and (2) disallowing positional embeddings in the visual input. This requires a
model to build its own spatial representation via introspection (see Appendix D.6 for
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further discussion). We compare the CTM against LSTM and feed-forward (FF) baselines.
For the results that follow, we trained a CTM, LSTMs (L = 1 and 3 layers), and a FF
baseline to predict up to 100 steps down the path of 39 X 39 mazes, where predictions
took the form of a sequence of 'up’, 'down’, 'left’, 'right’, and 'wait' moves, and 'waiting'
meant to pass until the next state. For the CTMs and LSTM baselines, we used 75 internal
ticks. The LSTM usually means memory using 50 ticks to predict superior performances so
we report those. In each case, we used a automatic curriculum approach with increasing
maze difficulty (see details in Appendix D.3). Appendices D.2 and D.4 detail hyper-
parameters for the CTM and baselines.

[f#2]
X—EBIEERERE, EERFRLRELAR— B, REECIREFEREEA,

B, (MEBAA, LAEREHSEAILIRES, WRAIKITABIIMNTREN “ARREE”
(Inductive Bias) — XMERLFEZHAYER, HELAIFT “RIR” —LEINLARE
KEEF—KE, EREELEL (GREDEX), PAREEHES—THREBREMITT. X
HERAR, BER4EritE, FRSHEIERN “BEST7, BARBAREXRERN AN AR
EXEN, SESHPR, BFEMN: BIEER, AEBARE -

FRLL, HAREBIRIT T —MUMMENEEES, BMNEATEEXMRZACTM (FENTUEAR
IBRR N — TR RRGARIVI BRI BIAIESRY) BB —M “WEPHFER” ** (Internal
World Model)

B MR ER? TEEM RS

1. M ERY . AIRBEREB—RL%, SRAGITHEX—F, —FTHE “k. T
. B HE FRE . XINEEBHIENMEIGENERRS.

2. ZRAMIEYRE (Positional Embeddings) : X—S=IEE X, Ta=¥EqHFEH, &
MBI AITR (X, y). BENAMSAMABLINMES (ki “FRIMIEELIR(G, 5)8
i), BAEXE, HREIEXD “GPS” X#ET, AIRGEEEIIXEHIEEE, MARMER
CEENLIFANEER, XMEKRALIHED ™ “AE” ** (Introspection), B2EMF
BgE—ktE, i8F “BRNETRST, WEMZERO

ANTIEBCTMMFE, HRBEHRTHED B FAEEL (Baselines):

o LSTM (KIZHRIZIZWLR) . XEUFIRIEFTIER (LLiEhiFaF) WEE, GREM=
EBYhR S,

o FF (BIRHENE) . REMIHENS, ARERBANFAFRET.

EEERNZE: E3FINKER, FUlETRRZ100S EAE. ATAF, FREEEERAT
—#* “BnhRIEFS)” ** (Automatic Curriculum Approach) BI757%. XREIRIIESI &
i, SMEENEME, FEETHRBIGINEE, MEFNEEH, MARLRMING
fR—EE,
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XERIERZOET: ARERERHTTAINGEE TR (GPSEHR), BBE/HRA—F, BIIENIZ
MHEEEM S ITER S RIS,

[RX]

4.1 Results

The CTM significantly outperforms the baselines in solving these mazes, demonstrating
superior trainability and generalization to longer paths (Figure 4). The FF model and
LSTMs struggled to learn effectively or overfit (see Appendix D.5), whereas the CTM
achieved high accuracy. This suggests that the CTM’ s architecture, particularly its use of
neural dynamics and synchronization, is well suited for tasks requiring robust internal
state maintenance and planning.

4.2 Demonstrations and Generalization

Qualitative analysis shows the CTM methodically tracing paths (Figures 1a and 1b;
supplementary video mazes.mp4), exhibiting emergent behaviors such as continuing to
explore paths beyond its training horizon. This suggests the CTM learns a general
procedure rather than simple memorizing. Furthermore, the CTM, trained on 39 X 39
mazes, generalizes effectively to longer paths and larger 99 X 99 mazes (Figure 1c) by
applying its learned policy, as shown in Figure 1c (see supplementary

video: maze_large_1.mp4to maze_large_4.mp4 for examples). Crucially, this CTM is not
using any positional embedding, meaning that in order for it to follow a path through the
maze it must craft the
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Figure 1: CTM versus baselines on 2D mazes. The CTM demonstrates superior trainability
compared to baselines yielding higher accuracy for longer paths. Using iterative re-
applications, we show in (b) that the CTM can generalise to longer paths and bigger
mazes. See Appendix D.5 for loss curves.

cross-attention query by 'imagining' the future state of the maze; a process known as
‘episodic future thinking' [44] in humans. Appendix | discusses some of the emergent
properties we observed.
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5 ImageNet-1K Classification: Adaptive
Processing and Emergent Dynamics

We evaluate the CTM on ImageNet-1K to understand its internal processing dynamics
when trained to solve a standard classification task. We are not yet aiming for state-of-
the-art accuracy (with 50 internal ticks and a ResNet-152 backbone: 72.47% top-1, 89.89%
top-5 on uncropped data). Since the CTM uses new neural computation principles, it
would require a thorough hyperparameter search to find the optimal settings, and this is
outside the scope of this work. Instead, we focus on howthe CTM leverages neural
dynamics (setup details in Appendix E.1) as a new mechanism for reasoning.
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5.1 Adaptive Computation and Calibration

Figure 5: ImageNet-1K results: (a) Native adaptive compute potential based on a 0.8
certainty threshold, showing performance expected at each internal tick. (b) Excellent
model calibration when averaging probabilities up to each tick shown. See Appendix E.3
for further analysis.

The CTM exhibits adaptive computation (Figure 5a), the synchronization of which is the
representation with which it observes data and forms predictions. We show in Figure 2b
how the CTM learns to 'hover' around an image in order to gather information and make a
prediction. It does this entirely without prompting or any guide, implementing
computationally beneficial adaptive compute of the CTM. In this scenario, the CTM will
make a prediction and stop if it is certain (above 0.8 confidence) after a fewer number of
internal ticks of compute. If the CTM is less certain, it performs additional internal ticks,
yielding greater accuracy in the final prediction (Figure 5a) and excellent calibration of
probabilities, meaning that a prediction with 0.75 confidence is correct 75% of the time
(Figure 5b). The CTM also demonstrates a consequent excellent calibration of probability
based on its iterative refinement process (Appendix E.3).
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5.2 Reasoning sequentially about static images

The CTM exhibits diverse temporal dynamics (Figure 2a), the synchronization of which is
the representation with which it observes data and forms predictions. We show in Figure
2b how the CTM learns to 'hover' around an image in order to gather information and
make a prediction. It does this entirely without prompting or any guide, implementing
computationally beneficial adaptive
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compute in an intuitive fashion. . This internal process can even manifest emergent
phenomena like low-frequency traveling waves [45] across UMAP-projected neuron
activations (see supplementary video umap.mp4). Unpacking every increasing facet of
these attention map progressions is simply infeasible for a static form; we encourage
viewing supplementary video attention.mp4 for demonstrations of the CTM 'gazing' in a
manner not quite entirely unlike how humans might look around images. Appendix E.4
has further demos and UMAP visualizations. These observations underscore that the CTM
solves classification by leveraging an internal, dynamic reasoning process, a departure
from typical feed-forward approaches.

6 Parity: Learning Sequential Algorithms and
Interpretable Strategies

To test the CTM’ s ability to learn algorithmic procedures and develop interpretable
strategies, we use a cumulative parity task: given a 64-length binary sequence, predict the
parity at each position (Figure 6a). Unlike prior work focusing on final parity [18], our
setup requires the model to output sequences at each internal tick, enabling us to
examine how the full output evolves across ticks and throughout training. Setup details
are in Appendix F.1.
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6.1 Results and Learned Strategies

Figure 6: CTM performance on the parity task: (a) example; (b) training accuracy
comparisons; (c) impact of internal ticks on accuracy; and (d) an example showing how
this CTM uses at least one attention head to scan the input sequence from start to end.
Error bars (b, shaded) represent 1 standard deviation over seeded runs. Appendix F.2
discusses the implications of seed variations.

The CTM’ s accuracy improves with more internal ticks, significantly outperforming
parameter-matched LSTMs, which struggled with parity task performance (Figure 6b).
LSTMs with 75 and 100 ticks could achieve perfect accuracy if some seeded runs (Figure
6d shows how the attention shifts over the input data, and Figure 7 shows a specific
demonstration of 4 attention heads), revealing a distinct and interpretable strategy.
Which specific style of solution depends on the configuration and seed, so we show other
examples and analyses in Appendix F.2). Crucially, this experiment demonstrates that the
CTM can learn to form and follow an internal strategy for an algorithmic task.

Figure 7: Determining parity: (a, b, ) are the trajectories of the argmax of attention for 4
heads and the corresponding prediction at different internal ticks, and (d) is the target
(perfectly predicted here). See supplementary material 'parity.mp4' for video format.

7 Other Experiments and Analyses

We also evaluated the CTM in a number of other settings in order to probe its functionality
and versatility. Owing to space constraints, we provide the details of these additional
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experiments in the appendices (referenced below). In summary, these additional
experiments investigated:
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CIFAR-10 Classification Compared to Human

CIFAR-10 (Appendix G.1): The CTM, feed-forward, and LSTM baselines were trained on
CIFAR-10, with results compared against human data for difficulty and uncertainty. The
CTM demonstrated good model calibration and alignment with humans.
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CIFAR-100 Ablation Studies

CIFAR-100 (Appendix G.2): We investigated the impact of model width and the number of
internal ticks. We found that the diversity of neural activity are functions of these. Wider
models tended to exhibit more varied neural dynamics. Using more internal ticks allowed
the CTM to engage in extended processing, sometimes revealing distinct computational
phases.

Neuron-Level Models and Synchronization Ablations

Neuron-Level Models and Synchronization Ablations (Appendix G.3): We compared the
CTM to parameter-matched variants without NLMs and without synchronization, as well
as an LST with synchronization. The results show that the combination of neuron-level
models and synchronization as a representation is key to the success of the CTM.

Sorting Real Numbers

Sorting Real Numbers (Appendix G.4): The CTM was tasked with sorting sequences of 30
real numbers, outputting sorted indices sequentially using a Connectionist Temporal
Classification (CTC) loss [46]. This experiment showed that the CTM could learn an
algorithmic sorting procedure and exhibited adaptive computation by varying its internal
processing duration (‘wait count') based on characteristics of the input sequence, such
that the difference between successive values.

Q&A MNIST

Q&A MNIST (Appendix G.5): In this task, the CTM processed sequences of MNIST digits
followed by index and operator embeddings to perform multi-step modular arithmetic.
This investigation highlighted the CTM’ s capacity for memory and retrieval, using its
synchronization mechanism to recall digit information beyond the immediate attention
window of individual neuron-level models, and to generalize to longer computational
sequences than seen during training.

Reinforcement Learning

Reinforcement Learning (Appendix G.6): The CTM was adapted for reinforcement learning
in several partially observable Markov decision processes (POMDPs), including classic
control (CartPole, Acrobot) and grid-world navigation (Navigational Four Rooms). This
highlighted the CTM’ s applicability to sequential decision-making in continuous
interaction settings, where it achieved performance comparable to LSTM baselines while
developing richer internal state dynamics.



8 Discussion and Conclusion
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The Continuous Thought Machine (CTM) represents a new perspective, where the
temporal dynamics of neural activity are central to artificial cognition. Its core innovations
—neuron-level models and synchronization as a latent representation—effectively enable
it to both unfold and leverage neural dynamics to solve problems. We showed in this work
that such an approach is not only feasible but also leads to unique computational
capabilities and emergent properties.

Our experiments demonstrate that the CTM can effectively solve challenging tasks. We
trained a CTM to observe, plan, and implement routes through 2D mazes using a setup
that necessitated the

formation of an internal world model. On ImageNet, the CTM exhibited native adaptive
computation, naturally tailoring its processing time to input difficulty, and achieved
strong calibration—a desirable property often requiring specialized techniques. On
algorithmic tasks like parity checking, the CTM developed interpretable, emergent
problem-solving strategies. Notably, the core architecture remained consistent across
tasks, highlighting its robustness.
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The CTM’ s NLMs are inspired by the complexity of biological neurons, but are
implemented with a level of abstraction appropriate for modern deep learning. The direct
use of neural synchronization as a representation is, to our knowledge, a novel approach
at this scale. Such a design, such as a high-cardinality representational space and the
potential to capture the temporal aspects of ‘thought’ . While traditional deep learning
has abstracted away neural timing for computational efficiency, the CTM shows that
reintroducing such dynamics in a structured way can unlock new functionalities.

Limitations.
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Limitations. The CTM uses an internal sequence, meaning training times are extended.
NLMs also increase parameter counts compared to standard activation functions, but also
provide a new avenue for scaling. The experiments in this paper are preliminary and not
intended to be state-of-the-art models tailored for performance. Therefore, a limitation of
this paper is its relatively limited depth of comparison since we favored breadth to
investigate the CTM’ s overall functionality.

Future Work.

Future Work. We plan to apply the CTM to language modeling, self-supervised video
understanding, life-long learning, biologically-inspired memory and plasticity, multi-
modal systems, and more. We believe that, conceptually, synchronization representations
have high widespread potential.
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