2025诺贝尔物理学奖深度解读:宏观量子隧穿

The 2025 physics Nobel Prize has been awarded to macroscopic quantum tunneling. I don't know anyone who had this on their bingo list. What is this? Why does it matter? And who are the people who won the prize? I have a brief summary. The prize was awarded to John Clark, Michel Devoret, and John Martinis. And it's a case where much of it can be traced back to a single paper that was published in 1985. This paper shows results which demonstrate that macroscopic quantum tunneling is real. Quantum tunneling you might have heard of. It's a case when a quantum particle can go through a barrier even though it doesn't have enough energy. That is if the particle didn't have quantum properties, it would be trapped. But if it has quantum properties, it can leak through the barrier. The probably best known application of quantum tunneling are electron tunneling microscopes. These probe basically the surface of a material atom by atom because electrons can tunnel into the tip of the microscope. However, this is a teeny tiny effect for single electrons. The three who won this year's Nobel Prize figured out that this can also happen for large collections of particles.

高三通俗解读 (第一段):

2025年的诺贝尔物理学奖颁给了一个听起来很酷炫但可能大部分人都没猜到的领域——“宏观量子隧穿”。这究竟是什么?为什么这么重要?获奖的又是谁呢?

简单来说,这次获奖的是三位科学家:约翰·克拉克、米歇尔·德沃雷特和约翰·马丁尼斯。他们的成就,很大程度上可以追溯到他们在1985年发表的一篇里程碑式的论文。这篇论文用实验结果证明了,“宏观量子隧穿”这个现象是真实存在的。

你可能听说过“量子隧穿效应”。它就像是量子世界里的“穿墙术”。想象一个皮球,你想让它越过一座山丘(一个“能量壁垒”),你必须给它足够的初始能量,让它能滚到山顶再滚下去。如果能量不够,它绝对过不去。但在微观的量子世界里,一个粒子(比如电子)就算能量不够翻越这座“山丘”,它也有一定的概率能像幽灵一样直接“穿”过去。这就是量子力学的奇妙之处,因为粒子具有波动性,它的存在像一团概率云,可以“渗透”到墙的另一边。最著名的应用就是“扫描隧道显微镜”,它能让我们看到单个原子,就是利用了电子“穿墙”到显微镜探针上的原理。

但是,请注意,这种传统的“穿墙术”是单个、微观粒子的行为,效应非常微弱。而今年这三位诺奖得主的伟大之处在于,他们发现:这种“穿墙术”不仅仅是单个小兵的特技,一个由千百万个粒子组成的“军团”也能集体实现! 这就是“宏观”二字的含义,它把一个纯粹的微观奇迹,拉到了一个更大、更接近我们日常世界的尺度上。

In particular, they were looking at currents in superconducting wires. This is maybe not exactly your idea of macroscopic. Personally, when I hear macroscopic, I think of a bus, but a current in such a wire consists of millions of electrons, and that's quite large compared to the single electron level. What they showed is that the collective behavior of the current in the wire can tunnel across a barrier. So, that's literally a gap. The wire needs to be superconducting for this to happen because otherwise the electrons don't behave as one quantum state. This means that these wires must be cooled to temperatures near absolute zero. You can see in this figure from the Nobel Prize winning paper that as the wires being cooled, the current behaves in a way that it be impossible without quantum effects.

高三通俗解读 (第二段):

具体来说,他们研究的是超导导线中的电流。一听到“宏观”,你可能会想到公交车那么大的东西,但在这里,“宏观”是相对的。相比于单个电子,一条导线中的电流是由数百万甚至更多的电子组成的,这在量子世界里绝对算得上是一个“庞然大物”了。他们证明了,这整个由海量电子构成的电流,可以作为一个整体,集体“穿”过一个物理上的障碍——比如导线中间的一个微小断口。这就好比整条河流突然学会了“穿墙”,直接越过堤坝出现在了另一边。

为什么必须是超导导线呢?这是关键。在普通导线里,电子们就像一群在集市里乱逛的人,各自为政,运动是混乱的。而在超导状态下(需要冷却到接近绝对零度的极低温),电子们会配对形成“库珀对”,并且所有这些“库珀对”的行为会高度同步,凝聚成一个单一的、巨大的量子态,物理上称为“宏观量子态”。此时,这数百万的电子不再是独立的个体,而是像一支纪律严明的军队,行动完全一致。只有在这种“万众一心”的状态下,集体的“穿墙”才可能发生。

下面的图模拟了他们论文中的核心思想:随着温度降低到超导临界点以下,电流的行为出现了经典物理无法解释的跳变,这就是宏观量子隧穿发生的证据。在某个临界温度之下,即使没有足够的能量,电流(宏观量子态)也“隧穿”了过去。

宏观量子隧穿示意图 温度 (T) 隧穿概率 (P) 低 → $T_c$ 0 经典物理预测:概率为零 $T_c$ (临界温度) 量子隧穿:概率随降温剧增

图解:根据经典物理,无论温度多低,没有足够能量的电流都无法通过壁垒(红色虚线)。但在量子世界中,当温度低于超导临界温度 $T_c$ 后,整个电流发生宏观量子隧穿的概率急剧上升(蓝色实线)。

The relevance of this effect and this is why I guess they awarded it a Nobel Prize is that it moved quantum physics into the microchip range in the 40 years after their discovery. This insight exploded into a vast number of applications. The best known of which is probably quantum computing because once you have this current that can tunnel, you can also have a current that's both on and off and that makes a cubit. Now the quantum computers with superconducting circuits which are being used by Google and IBM and Amazon and so on don't use exactly the same technology they used in their 1985 experiment but it goes back to what this group did in the 1980s.

高三通俗解读 (第三段):

这个发现为什么如此重要,以至于能摘得诺奖桂冠呢?因为它在随后的40年里,将量子物理从纯理论的殿堂,成功地带入了微芯片的现实世界。这一突破性的见解催生了海量的应用,其中最耀眼的明星无疑是“量子计算”。

这其中的逻辑是这样的:我们知道,经典计算机用“0”和“1”来表示信息,比如电流的“关”和“开”。而一个可以集体“穿墙”的超导电流,根据量子叠加原理,它可以同时处于“穿过去了”和“没穿过去”这两种状态的叠加态。这就意味着,这个电流可以同时代表“0”和“1”。瞧,一个“量子比特”(qubit)——量子计算机的基本信息单元——就这样诞生了!

今天,像谷歌、IBM、亚马逊等科技巨头正在大力研发的超导量子计算机,虽然具体技术比1985年的那个原始实验要复杂得多,但其最根本的物理原理,都源于这三位科学家在80年代的开创性工作。他们为建造量子计算机铺下了第一块,也是最关键的一块基石。

The factors also being used in some experiments to look for dark matter particles that might interrupt the currents. Besides that I don't think it has yet a lot of applications. I think that the biggest downstream effect of this discovery has been that it made quantum technology a reality. It's still mostly an academic enterprise, but one that's on the way to practical applications. And this has entirely changed physicists attitude to quantum mechanics. In the 1980s, when these guys did their experiment, quantum physics was a mostly philosophical enterprise. No one thought it would have much practical relevance one way or another. All this stuff with things being in two places and spooky action was just so far removed from anything tangible. But the macroscopic quantum tunneling was a major turning point that moved quantum physics into the tangible range. At least if you have a physics lab with superconducting wires.

高三通俗解读 (第四段):

除了量子计算,这项技术也被用于一些前沿的暗物质探测实验中,科学家们希望利用这种对外界干扰极其敏感的超导电流量子态,来捕捉暗物质粒子撞击时产生的微弱信号。不过总的来说,目前它的应用还不算非常广泛。

然而,这项发现最深远的影响,是它让“量子技术”成为了现实。它彻底改变了物理学家们对量子力学的看法。在80年代他们做这个实验的时候,量子力学在很多人眼里更像是一种哲学思辨,大家争论着薛定谔的猫、平行宇宙这些玄之又玄的概念,没人觉得这些东西能有什么实际用途。“粒子能同时在两个地方”或者“鬼魅般的超距作用”听起来离现实生活太遥远了。但是,“宏观量子隧穿”的实验成功,就像一个转折点,它第一次向世界证明:量子世界的奇异法则,是可以在实验室里被我们精确操控,并以一种“宏观”的、可触摸的方式展现出来的。量子力学不再仅仅是黑板上的公式和哲学家的遐想,它变成了一种可以被工程师利用的、实实在在的技术。这极大地激发了后来几十年量子技术研究的热潮。

Back then they argued all night over the interpretation of quantum mechanics. Now they argue all night over the interpretation of quantum mechanics but in a clean room. So what are we to make of this year's Nobel Prize? It makes sense that rather than giving a Nobel Prize to quantum computing, they would give a Nobel Prize to the technology that made the first quantum computers possible. Though as a theoretical physicist, I find it to be somewhat depressing. I as many others thought that the Nobel Prize would go to the theoretical work on quantum computing to David Deutsch and maybe Peter Shaw. It's tough to be a theorist. Then again, we must keep in mind that the Nobel Prize is not a community award. It's given out by the Royal Swedish Academy of Sciences, which is tasked with interpreting and fulfilling the will of Alfred Nobel.

高三通俗解读 (第五段):

作者用一个俏皮话总结了这种变化:“过去,他们在普通房间里为量子力学的诠释通宵争论;现在,他们在(用于制造芯片的)无尘室里为量子力学的诠释通宵争论。” 争论的内容没变,但地点变了,这意味着争论的性质从纯理论变成了与工程应用紧密结合的实践。

那么我们该如何看待今年的诺奖呢?作者认为,诺贝尔奖委员会没有直接颁奖给“量子计算”这个宏大的领域,而是颁给了那个“让第一台量子计算机成为可能”的奠基性技术,这是非常合理的。这体现了诺奖对源头创新和实验物理的重视。

不过,作为一名理论物理学家,作者也坦言自己有点小小的失落。因为很多人(包括他自己)曾预测,诺奖会颁给在量子计算理论方面做出巨大贡献的科学家,比如大卫·杜斯和彼得·肖(他提出了著名的肖氏算法,证明了量子计算机可以破解现有加密体系)。这反映了理论与实验之间的一种微妙关系:理论家勾画蓝图,但实验家将蓝图变为现实,而诺贝尔奖往往更青睐那些带来了可验证、可触摸的物理突破的后者。最后作者提醒我们,诺贝尔奖并非科学界的“民意奖”,它是由瑞典皇家科学院根据诺贝尔本人的遗嘱来评选的,有其自己的一套标准和传统。

It's not great that this one person on the committee that selects the prize recipients should have such a huge influence on science overall. Then again, I think of Nobel Prize Week as science celebration week. It's the one week of the year when the entire world wakes up and remembers how much we owe to science. and the one week my inbox tunnels through the spam filter. Where does Sabina get her science news? It's not on YouTube. My most trusted source is Nautilus. If you aren't already subscribed to them, you should have a look. Nautilus keeps you up to date on the most relevant topics in science today. For example, they just had this very interesting article about whether life is a sort of computation, what that means and why it matters. or this one about the new data from the Vera Rubin Observatory. What I particularly like is that they cover science in its full breadth from astronomy to economics, history, neuroscience to philosophy and physics. They'll pick the most relevant topics and give you all the context. I've written several contributions for Nautilus myself. Nautilus has a digital and a print version and it's just a pleasure to read. They really put a lot of effort into writing and the graphic design is amazing. You notice immediately if you open the print version that it's a high quality production. You can join Nautilus as a digital only member or get a print subscription. In addition to full access to all the stories in Nautilus, members receive benefits like priority access to events, exclusive products, and product discounts. And of course, I have a special offer. If you use my custom link, join nautilus.com/sabina, you'll get 15% off your membership subscription. So, go and check this out. Thanks for watching. See you tomorrow.

高三通俗解读 (第六段及结尾):

在文章的最后部分,作者对诺贝尔奖评选机制的巨大影响力提出了一点反思,认为单个委员会对科学走向产生如此大的影响未必是件好事。但无论如何,他更愿意将“诺奖周”看作是“科学庆典周”。在这一周里,全世界的目光都会聚焦于科学,人们会再次记起我们这个时代的发展是多么得益于科学的进步。作者还开玩笑说,这也是他邮箱里的邮件能“隧穿”过垃圾邮件过滤器的一周。

(接下来的内容是作者为其信赖的科学新闻来源 Nautilus 做的推广,介绍了这个平台的优点,并提供了订阅优惠。这部分内容与诺奖解读本身关联不大,主要是为了支持作者的创作。)

总而言之,2025年的诺贝尔物理学奖表彰了一项将量子力学从理论神坛拉入工程现实的关键实验突破。它不仅为量子计算机的诞生奠定了物理基础,更重要的是,它开启了“量子技术”这个激动人心的新时代,让我们可以真正地去驾驭和利用量子世界的奇异规则。